1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
/*---------------------------------------------------------------------------*\
FILE........: sine.c
AUTHOR......: David Rowe
DATE CREATED: 19/8/2010
Sinusoidal analysis and synthesis functions.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 1990-2010 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*---------------------------------------------------------------------------*\
INCLUDES
\*---------------------------------------------------------------------------*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "defines.h"
#include "sine.h"
#include "fft.h"
#define HPF_BETA 0.125
/*---------------------------------------------------------------------------*\
HEADERS
\*---------------------------------------------------------------------------*/
void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax,
float pstep);
/*---------------------------------------------------------------------------*\
FUNCTIONS
\*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*\
FUNCTION....: make_analysis_window
AUTHOR......: David Rowe
DATE CREATED: 11/5/94
Init function that generates the time domain analysis window and it's DFT.
\*---------------------------------------------------------------------------*/
void make_analysis_window(float w[],COMP W[])
{
float m;
COMP temp;
int i,j;
/*
Generate Hamming window centered on M-sample pitch analysis window
0 M/2 M-1
|-------------|-------------|
|-------|-------|
NW samples
All our analysis/synthsis is centred on the M/2 sample.
*/
m = 0.0;
for(i=0; i<M/2-NW/2; i++)
w[i] = 0.0;
for(i=M/2-NW/2,j=0; i<M/2+NW/2; i++,j++) {
w[i] = 0.5 - 0.5*cos(TWO_PI*j/(NW-1));
m += w[i]*w[i];
}
for(i=M/2+NW/2; i<M; i++)
w[i] = 0.0;
/* Normalise - makes freq domain amplitude estimation straight
forward */
m = 1.0/sqrt(m*FFT_ENC);
for(i=0; i<M; i++) {
w[i] *= m;
}
/*
Generate DFT of analysis window, used for later processing. Note
we modulo FFT_ENC shift the time domain window w[], this makes the
imaginary part of the DFT W[] equal to zero as the shifted w[] is
even about the n=0 time axis if NW is odd. Having the imag part
of the DFT W[] makes computation easier.
0 FFT_ENC-1
|-------------------------|
----\ /----
\ /
\ / <- shifted version of window w[n]
\ /
\ /
-------
|---------| |---------|
NW/2 NW/2
*/
for(i=0; i<FFT_ENC; i++) {
W[i].real = 0.0;
W[i].imag = 0.0;
}
for(i=0; i<NW/2; i++)
W[i].real = w[i+M/2];
for(i=FFT_ENC-NW/2,j=M/2-NW/2; i<FFT_ENC; i++,j++)
W[i].real = w[j];
fft(&W[0].real,FFT_ENC,-1); /* "Numerical Recipes in C" FFT */
/*
Re-arrange W[] to be symmetrical about FFT_ENC/2. Makes later
analysis convenient.
Before:
0 FFT_ENC-1
|----------|---------|
__ _
\ /
\_______________/
After:
0 FFT_ENC-1
|----------|---------|
___
/ \
________/ \_______
*/
for(i=0; i<FFT_ENC/2; i++) {
temp.real = W[i].real;
temp.imag = W[i].imag;
W[i].real = W[i+FFT_ENC/2].real;
W[i].imag = W[i+FFT_ENC/2].imag;
W[i+FFT_ENC/2].real = temp.real;
W[i+FFT_ENC/2].imag = temp.imag;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: hpf
AUTHOR......: David Rowe
DATE CREATED: 16 Nov 2010
High pass filter with a -3dB point of about 160Hz.
y(n) = -HPF_BETA*y(n-1) + x(n) - x(n-1)
\*---------------------------------------------------------------------------*/
float hpf(float x, float states[])
{
states[0] += -HPF_BETA*states[0] + x - states[1];
states[1] = x;
return states[0];
}
/*---------------------------------------------------------------------------*\
FUNCTION....: dft_speech
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Finds the DFT of the current speech input speech frame.
\*---------------------------------------------------------------------------*/
void dft_speech(COMP Sw[], float Sn[], float w[])
{
int i;
for(i=0; i<FFT_ENC; i++) {
Sw[i].real = 0.0;
Sw[i].imag = 0.0;
}
/* Centre analysis window on time axis, we need to arrange input
to FFT this way to make FFT phases correct */
/* move 2nd half to start of FFT input vector */
for(i=0; i<NW/2; i++)
Sw[i].real = Sn[i+M/2]*w[i+M/2];
/* move 1st half to end of FFT input vector */
for(i=0; i<NW/2; i++)
Sw[FFT_ENC-NW/2+i].real = Sn[i+M/2-NW/2]*w[i+M/2-NW/2];
fft(&Sw[0].real,FFT_ENC,-1);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: two_stage_pitch_refinement
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Refines the current pitch estimate using the harmonic sum pitch
estimation technique.
\*---------------------------------------------------------------------------*/
void two_stage_pitch_refinement(MODEL *model, COMP Sw[])
{
float pmin,pmax,pstep; /* pitch refinment minimum, maximum and step */
/* Coarse refinement */
pmax = TWO_PI/model->Wo + 5;
pmin = TWO_PI/model->Wo - 5;
pstep = 1.0;
hs_pitch_refinement(model,Sw,pmin,pmax,pstep);
/* Fine refinement */
pmax = TWO_PI/model->Wo + 1;
pmin = TWO_PI/model->Wo - 1;
pstep = 0.25;
hs_pitch_refinement(model,Sw,pmin,pmax,pstep);
/* Limit range */
if (model->Wo < TWO_PI/P_MAX)
model->Wo = TWO_PI/P_MAX;
if (model->Wo > TWO_PI/P_MIN)
model->Wo = TWO_PI/P_MIN;
model->L = floor(PI/model->Wo);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: hs_pitch_refinement
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Harmonic sum pitch refinement function.
pmin pitch search range minimum
pmax pitch search range maximum
step pitch search step size
model current pitch estimate in model.Wo
model refined pitch estimate in model.Wo
\*---------------------------------------------------------------------------*/
void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float pstep)
{
int m; /* loop variable */
int b; /* bin for current harmonic centre */
float E; /* energy for current pitch*/
float Wo; /* current "test" fundamental freq. */
float Wom; /* Wo that maximises E */
float Em; /* mamimum energy */
float r; /* number of rads/bin */
float p; /* current pitch */
/* Initialisation */
model->L = PI/model->Wo; /* use initial pitch est. for L */
Wom = model->Wo;
Em = 0.0;
r = TWO_PI/FFT_ENC;
/* Determine harmonic sum for a range of Wo values */
for(p=pmin; p<=pmax; p+=pstep) {
E = 0.0;
Wo = TWO_PI/p;
/* Sum harmonic magnitudes */
for(m=1; m<=model->L; m++) {
b = floor(m*Wo/r + 0.5);
E += Sw[b].real*Sw[b].real + Sw[b].imag*Sw[b].imag;
}
/* Compare to see if this is a maximum */
if (E > Em) {
Em = E;
Wom = Wo;
}
}
model->Wo = Wom;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: estimate_amplitudes
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Estimates the complex amplitudes of the harmonics.
\*---------------------------------------------------------------------------*/
void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[])
{
int i,m; /* loop variables */
int am,bm; /* bounds of current harmonic */
int b; /* DFT bin of centre of current harmonic */
float den; /* denominator of amplitude expression */
float r; /* number of rads/bin */
int offset;
COMP Am;
r = TWO_PI/FFT_ENC;
for(m=1; m<=model->L; m++) {
den = 0.0;
am = floor((m - 0.5)*model->Wo/r + 0.5);
bm = floor((m + 0.5)*model->Wo/r + 0.5);
b = floor(m*model->Wo/r + 0.5);
/* Estimate ampltude of harmonic */
den = 0.0;
Am.real = Am.imag = 0.0;
for(i=am; i<bm; i++) {
den += Sw[i].real*Sw[i].real + Sw[i].imag*Sw[i].imag;
offset = i + FFT_ENC/2 - floor(m*model->Wo/r + 0.5);
Am.real += Sw[i].real*W[offset].real;
Am.imag += Sw[i].imag*W[offset].real;
}
model->A[m] = sqrt(den);
/* Estimate phase of harmonic */
model->phi[m] = atan2(Sw[b].imag,Sw[b].real);
}
}
/*---------------------------------------------------------------------------*\
est_voicing_mbe()
Returns the error of the MBE cost function for a fiven F0.
Note: I think a lot of the operations below can be simplified as
W[].imag = 0 and has been normalised such that den always equals 1.
\*---------------------------------------------------------------------------*/
float est_voicing_mbe(
MODEL *model,
COMP Sw[],
COMP W[],
COMP Sw_[], /* DFT of all voiced synthesised signal */
/* useful for debugging/dump file */
COMP Ew[], /* DFT of error */
float prev_Wo)
{
int i,l,al,bl,m; /* loop variables */
COMP Am; /* amplitude sample for this band */
int offset; /* centers Hw[] about current harmonic */
float den; /* denominator of Am expression */
float error; /* accumulated error between original and synthesised */
float Wo;
float sig, snr;
float elow, ehigh, eratio;
float dF0, sixty;
sig = 0.0;
for(l=1; l<=model->L/4; l++) {
sig += model->A[l]*model->A[l];
}
for(i=0; i<FFT_ENC; i++) {
Sw_[i].real = 0.0;
Sw_[i].imag = 0.0;
Ew[i].real = 0.0;
Ew[i].imag = 0.0;
}
Wo = model->Wo;
error = 0.0;
/* Just test across the harmonics in the first 1000 Hz (L/4) */
for(l=1; l<=model->L/4; l++) {
Am.real = 0.0;
Am.imag = 0.0;
den = 0.0;
al = ceil((l - 0.5)*Wo*FFT_ENC/TWO_PI);
bl = ceil((l + 0.5)*Wo*FFT_ENC/TWO_PI);
/* Estimate amplitude of harmonic assuming harmonic is totally voiced */
for(m=al; m<bl; m++) {
offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5;
Am.real += Sw[m].real*W[offset].real + Sw[m].imag*W[offset].imag;
Am.imag += Sw[m].imag*W[offset].real - Sw[m].real*W[offset].imag;
den += W[offset].real*W[offset].real + W[offset].imag*W[offset].imag;
}
Am.real = Am.real/den;
Am.imag = Am.imag/den;
/* Determine error between estimated harmonic and original */
for(m=al; m<bl; m++) {
offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5;
Sw_[m].real = Am.real*W[offset].real - Am.imag*W[offset].imag;
Sw_[m].imag = Am.real*W[offset].imag + Am.imag*W[offset].real;
Ew[m].real = Sw[m].real - Sw_[m].real;
Ew[m].imag = Sw[m].imag - Sw_[m].imag;
error += Ew[m].real*Ew[m].real;
error += Ew[m].imag*Ew[m].imag;
}
}
snr = 10.0*log10(sig/error);
if (snr > V_THRESH)
model->voiced = 1;
else
model->voiced = 0;
/* post processing, helps clean up some voicing errors ------------------*/
/*
Determine the ratio of low freancy to high frequency energy,
voiced speech tends to be dominated by low frequency energy,
unvoiced by high frequency. This measure can be used to
determine if we have made any gross errors.
*/
elow = ehigh = 0.0;
for(l=1; l<=model->L/2; l++) {
elow += model->A[l]*model->A[l];
}
for(l=model->L/2; l<=model->L; l++) {
ehigh += model->A[l]*model->A[l];
}
eratio = 10.0*log10(elow/ehigh);
dF0 = 0.0;
/* Look for Type 1 errors, strongly V speech that has been
accidentally declared UV */
if (model->voiced == 0)
if (eratio > 10.0)
model->voiced = 1;
/* Look for Type 2 errors, strongly UV speech that has been
accidentally declared V */
if (model->voiced == 1) {
if (eratio < -10.0)
model->voiced = 0;
/* If pitch is jumping about it's likely this is UV */
dF0 = (model->Wo - prev_Wo)*FS/TWO_PI;
if (fabs(dF0) > 15.0)
model->voiced = 0;
/* A common source of Type 2 errors is the pitch estimator
gives a low (50Hz) estimate for UV speech, which gives a
good match with noise due to the close harmoonic spacing.
These errors are much more common than people with 50Hz
pitch, so we have just a small eratio threshold. */
sixty = 60.0*TWO_PI/FS;
if ((eratio < -4.0) && (model->Wo <= sixty))
model->voiced = 0;
}
//printf(" v: %d snr: %f eratio: %3.2f %f\n",model->voiced,snr,eratio,dF0);
return snr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: make_synthesis_window
AUTHOR......: David Rowe
DATE CREATED: 11/5/94
Init function that generates the trapezoidal (Parzen) sythesis window.
\*---------------------------------------------------------------------------*/
void make_synthesis_window(float Pn[])
{
int i;
float win;
/* Generate Parzen window in time domain */
win = 0.0;
for(i=0; i<N/2-TW; i++)
Pn[i] = 0.0;
win = 0.0;
for(i=N/2-TW; i<N/2+TW; win+=1.0/(2*TW), i++ )
Pn[i] = win;
for(i=N/2+TW; i<3*N/2-TW; i++)
Pn[i] = 1.0;
win = 1.0;
for(i=3*N/2-TW; i<3*N/2+TW; win-=1.0/(2*TW), i++)
Pn[i] = win;
for(i=3*N/2+TW; i<2*N; i++)
Pn[i] = 0.0;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: synthesise
AUTHOR......: David Rowe
DATE CREATED: 20/2/95
Synthesise a speech signal in the frequency domain from the
sinusodal model parameters. Uses overlap-add with a trapezoidal
window to smoothly interpolate betwen frames.
\*---------------------------------------------------------------------------*/
void synthesise(
float Sn_[], /* time domain synthesised signal */
MODEL *model, /* ptr to model parameters for this frame */
float Pn[], /* time domain Parzen window */
int shift /* flag used to handle transition frames */
)
{
int i,l,j,b; /* loop variables */
COMP Sw_[FFT_DEC]; /* DFT of synthesised signal */
if (shift) {
/* Update memories */
for(i=0; i<N-1; i++) {
Sn_[i] = Sn_[i+N];
}
Sn_[N-1] = 0.0;
}
for(i=0; i<FFT_DEC; i++) {
Sw_[i].real = 0.0;
Sw_[i].imag = 0.0;
}
/*
Nov 2010 - found that synthesis using time domain cos() functions
gives better results for synthesis frames greater than 10ms. Inverse
FFT synthesis using a 512 pt FFT works well for 10ms window. I think
(but am not sure) that the problem is realted to the quantisation of
the harmonic frequencies to the FFT bin size, e.g. there is a
8000/512 Hz step between FFT bins. For some reason this makes
the speech from longer frame > 10ms sound poor. The effect can also
be seen when synthesising test signals like single sine waves, some
sort of amplitude modulation at the frame rate.
Another possibility is using a larger FFT size (1024 or 2048).
*/
#define FFT_SYNTHESIS
#ifdef FFT_SYNTHESIS
/* Now set up frequency domain synthesised speech */
for(l=1; l<=model->L; l++) {
b = floor(l*model->Wo*FFT_DEC/TWO_PI + 0.5);
if (b > ((FFT_DEC/2)-1)) {
b = (FFT_DEC/2)-1;
}
Sw_[b].real = model->A[l]*cos(model->phi[l]);
Sw_[b].imag = model->A[l]*sin(model->phi[l]);
Sw_[FFT_DEC-b].real = Sw_[b].real;
Sw_[FFT_DEC-b].imag = -Sw_[b].imag;
}
/* Perform inverse DFT */
fft(&Sw_[0].real,FFT_DEC,1);
#else
/*
Direct time domain synthesis using the cos() function. Works
well at 10ms and 20ms frames rates. Note synthesis window is
still used to handle overlap-add between adjacent frames. This
could be simplified as we don't need to synthesise where Pn[]
is zero.
*/
for(l=1; l<=model->L; l++) {
for(i=0,j=-N+1; i<N-1; i++,j++) {
Sw_[FFT_DEC-N+1+i].real += 2.0*model->A[l]*cos(j*model->Wo*l + model->phi[l]);
}
for(i=N-1,j=0; i<2*N; i++,j++)
Sw_[j].real += 2.0*model->A[l]*cos(j*model->Wo*l + model->phi[l]);
}
#endif
/* Overlap add to previous samples */
for(i=0; i<N-1; i++) {
Sn_[i] += Sw_[FFT_DEC-N+1+i].real*Pn[i];
}
if (shift)
for(i=N-1,j=0; i<2*N; i++,j++)
Sn_[i] = Sw_[j].real*Pn[i];
else
for(i=N-1,j=0; i<2*N; i++,j++)
Sn_[i] += Sw_[j].real*Pn[i];
}
|