1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
/*---------------------------------------------------------------------------*\
FILE........: lpc.c
AUTHOR......: David Rowe
DATE CREATED: 30/9/90
Linear Prediction functions written in C.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2009 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define LPC_MAX_N 512 /* maximum no. of samples in frame */
#define PI 3.141592654 /* mathematical constant */
#include <assert.h>
#include <math.h>
#include "defines.h"
#include "lpc.h"
/*---------------------------------------------------------------------------*\
hanning_window()
Hanning windows a frame of speech samples.
\*---------------------------------------------------------------------------*/
void hanning_window(
float Sn[], /* input frame of speech samples */
float Wn[], /* output frame of windowed samples */
int Nsam /* number of samples */
)
{
int i; /* loop variable */
for(i=0; i<Nsam; i++)
Wn[i] = Sn[i]*(0.5 - 0.5*cos(2*PI*(float)i/(Nsam-1)));
}
/*---------------------------------------------------------------------------*\
autocorrelate()
Finds the first P autocorrelation values of an array of windowed speech
samples Sn[].
\*---------------------------------------------------------------------------*/
void autocorrelate(
float Sn[], /* frame of Nsam windowed speech samples */
float Rn[], /* array of P+1 autocorrelation coefficients */
int Nsam, /* number of windowed samples to use */
int order /* order of LPC analysis */
)
{
int i,j; /* loop variables */
for(j=0; j<order+1; j++) {
Rn[j] = 0.0;
for(i=0; i<Nsam-j; i++)
Rn[j] += Sn[i]*Sn[i+j];
}
}
/*---------------------------------------------------------------------------*\
autocorrelate_freq()
Finds the first P autocorrelation values from an array of frequency domain
power samples.
\*---------------------------------------------------------------------------*/
void autocorrelate_freq(
float Pw[], /* Nsam frequency domain power spectrum samples */
float w[], /* frequency of each sample in Pw[] */
float R[], /* array of order+1 autocorrelation coefficients */
int Nsam, /* number of windowed samples to use */
int order /* order of LPC analysis */
)
{
int i,j; /* loop variables */
for(j=0; j<order+1; j++) {
R[j] = 0.0;
for(i=0; i<Nsam; i++)
R[j] += Pw[i]*cos(j*w[i]);
}
R[j] /= Nsam;
}
/*---------------------------------------------------------------------------*\
levinson_durbin()
Given P+1 autocorrelation coefficients, finds P Linear Prediction Coeff.
(LPCs) where P is the order of the LPC all-pole model. The Levinson-Durbin
algorithm is used, and is described in:
J. Makhoul
"Linear prediction, a tutorial review"
Proceedings of the IEEE
Vol-63, No. 4, April 1975
\*---------------------------------------------------------------------------*/
void levinson_durbin(
float R[], /* order+1 autocorrelation coeff */
float lpcs[], /* order+1 LPC's */
int order /* order of the LPC analysis */
)
{
float E[LPC_MAX+1];
float k[LPC_MAX+1];
float a[LPC_MAX+1][LPC_MAX+1];
float sum;
int i,j; /* loop variables */
E[0] = R[0]; /* Equation 38a, Makhoul */
for(i=1; i<=order; i++) {
sum = 0.0;
for(j=1; j<=i-1; j++)
sum += a[i-1][j]*R[i-j];
k[i] = -1.0*(R[i] + sum)/E[i-1]; /* Equation 38b, Makhoul */
if (fabs(k[i]) > 1.0)
k[i] = 0.0;
a[i][i] = k[i];
for(j=1; j<=i-1; j++)
a[i][j] = a[i-1][j] + k[i]*a[i-1][i-j]; /* Equation 38c, Makhoul */
E[i] = (1-k[i]*k[i])*E[i-1]; /* Equation 38d, Makhoul */
}
for(i=1; i<=order; i++)
lpcs[i] = a[order][i];
lpcs[0] = 1.0;
}
/*---------------------------------------------------------------------------*\
inverse_filter()
Inverse Filter, A(z). Produces an array of residual samples from an array
of input samples and linear prediction coefficients.
The filter memory is stored in the first order samples of the input array.
\*---------------------------------------------------------------------------*/
void inverse_filter(
float Sn[], /* Nsam input samples */
float a[], /* LPCs for this frame of samples */
int Nsam, /* number of samples */
float res[], /* Nsam residual samples */
int order /* order of LPC */
)
{
int i,j; /* loop variables */
for(i=0; i<Nsam; i++) {
res[i] = 0.0;
for(j=0; j<=order; j++)
res[i] += Sn[i-j]*a[j];
}
}
/*---------------------------------------------------------------------------*\
synthesis_filter()
C version of the Speech Synthesis Filter, 1/A(z). Given an array of
residual or excitation samples, and the the LP filter coefficients, this
function will produce an array of speech samples. This filter structure is
IIR.
The synthesis filter has memory as well, this is treated in the same way
as the memory for the inverse filter (see inverse_filter() notes above).
The difference is that the memory for the synthesis filter is stored in
the output array, wheras the memory of the inverse filter is stored in the
input array.
Note: the calling function must update the filter memory.
\*---------------------------------------------------------------------------*/
void synthesis_filter(
float res[], /* Nsam input residual (excitation) samples */
float a[], /* LPCs for this frame of speech samples */
int Nsam, /* number of speech samples */
int order, /* LPC order */
float Sn_[] /* Nsam output synthesised speech samples */
)
{
int i,j; /* loop variables */
/* Filter Nsam samples */
for(i=0; i<Nsam; i++) {
Sn_[i] = res[i]*a[0];
for(j=1; j<=order; j++)
Sn_[i] -= Sn_[i-j]*a[j];
}
}
/*---------------------------------------------------------------------------*\
find_aks()
This function takes a frame of samples, and determines the linear
prediction coefficients for that frame of samples.
\*---------------------------------------------------------------------------*/
void find_aks(
float Sn[], /* Nsam samples with order sample memory */
float a[], /* order+1 LPCs with first coeff 1.0 */
int Nsam, /* number of input speech samples */
int order, /* order of the LPC analysis */
float *E /* residual energy */
)
{
float Wn[LPC_MAX_N]; /* windowed frame of Nsam speech samples */
float R[LPC_MAX+1]; /* order+1 autocorrelation values of Sn[] */
int i;
assert(order < LPC_MAX);
assert(Nsam < LPC_MAX_N);
hanning_window(Sn,Wn,Nsam);
autocorrelate(Wn,R,Nsam,order);
levinson_durbin(R,a,order);
*E = 0.0;
for(i=0; i<=order; i++)
*E += a[i]*R[i];
if (*E < 0.0)
*E = 1E-12;
}
/*---------------------------------------------------------------------------*\
weight()
Weights a vector of LPCs.
\*---------------------------------------------------------------------------*/
void weight(
float ak[], /* vector of order+1 LPCs */
float gamma, /* weighting factor */
int order, /* num LPCs (excluding leading 1.0) */
float akw[] /* weighted vector of order+1 LPCs */
)
{
int i;
for(i=1; i<=order; i++)
akw[i] = ak[i]*pow(gamma,(float)i);
}
|