1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
#!/usr/bin/env python
#
# Copyright 2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gru, usrp, optfir, audio, eng_notation, blks2
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
"""
This example application demonstrates receiving and demodulating
different types of signals using the USRP.
A receive chain is built up of the following signal processing
blocks:
USRP - Daughter board source generating complex baseband signal.
CHAN - Low pass filter to select channel bandwidth
RFSQL - RF squelch zeroing output when input power below threshold
AGC - Automatic gain control leveling signal at [-1.0, +1.0]
DEMOD - Demodulation block appropriate to selected signal type.
This converts the complex baseband to real audio frequencies,
and applies an appropriate low pass decimating filter.
CTCSS - Optional tone squelch zeroing output when tone is not present.
RSAMP - Resampler block to convert audio sample rate to user specified
sound card output rate.
AUDIO - Audio sink for playing final output to speakers.
The following are required command line parameters:
-f FREQ USRP receive frequency
-m MOD Modulation type, select from AM, FM, or WFM
The following are optional command line parameters:
-R SUBDEV Daughter board specification, defaults to first found
-c FREQ Calibration offset. Gets added to receive frequency.
Defaults to 0.0 Hz.
-g GAIN Daughterboard gain setting. Defaults to mid-range.
-o RATE Sound card output rate. Defaults to 32000. Useful if
your sound card only accepts particular sample rates.
-r RFSQL RF squelch in db. Defaults to -50.0.
-p FREQ CTCSS frequency. Opens squelch when tone is present.
Once the program is running, ctrl-break (Ctrl-C) stops operation.
Please see fm_demod.py and am_demod.py for details of the demodulation
blocks.
"""
# (usrp_decim, channel_decim, audio_decim, channel_pass, channel_stop, demod)
demod_params = {
'AM' : (250, 16, 1, 5000, 8000, blks2.demod_10k0a3e_cf),
'FM' : (250, 8, 4, 8000, 9000, blks2.demod_20k0f3e_cf),
'WFM' : (250, 1, 8, 90000, 100000, blks2.demod_200kf3e_cf)
}
class usrp_src(gr.hier_block2):
"""
Create a USRP source object supplying complex floats.
Selects user supplied subdevice or chooses first available one.
Calibration value is the offset from the tuned frequency to
the actual frequency.
"""
def __init__(self, subdev_spec, decim, gain=None, calibration=0.0):
gr.hier_block2.__init__(self, "usrp_src",
gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
self._decim = decim
self._src = usrp.source_c()
if subdev_spec is None:
subdev_spec = usrp.pick_rx_subdevice(self._src)
self._subdev = usrp.selected_subdev(self._src, subdev_spec)
self._src.set_mux(usrp.determine_rx_mux_value(self._src, subdev_spec))
self._src.set_decim_rate(self._decim)
# If no gain specified, set to midrange
if gain is None:
g = self._subdev.gain_range()
gain = (g[0]+g[1])/2.0
self._subdev.set_gain(gain)
self._cal = calibration
self.connect(self._src, self)
def tune(self, freq):
result = usrp.tune(self._src, 0, self._subdev, freq+self._cal)
# TODO: deal with residual
def rate(self):
return self._src.adc_rate()/self._decim
class app_top_block(gr.top_block):
def __init__(self, options):
gr.top_block.__init__(self)
self.options = options
(usrp_decim, channel_decim, audio_decim,
channel_pass, channel_stop, demod) = demod_params[options.modulation]
USRP = usrp_src(options.rx_subdev_spec, # Daugherboard spec
usrp_decim, # IF decimation ratio
options.gain, # Receiver gain
options.calibration) # Frequency offset
USRP.tune(options.frequency)
if_rate = USRP.rate()
channel_rate = if_rate // channel_decim
audio_rate = channel_rate // audio_decim
CHAN_taps = optfir.low_pass(1.0, # Filter gain
if_rate, # Sample rate
channel_pass, # One sided modulation bandwidth
channel_stop, # One sided channel bandwidth
0.1, # Passband ripple
60) # Stopband attenuation
CHAN = gr.freq_xlating_fir_filter_ccf(channel_decim, # Decimation rate
CHAN_taps, # Filter taps
0.0, # Offset frequency
if_rate) # Sample rate
RFSQL = gr.pwr_squelch_cc(options.rf_squelch, # Power threshold
125.0/channel_rate, # Time constant
channel_rate/20, # 50ms rise/fall
False) # Zero, not gate output
AGC = gr.agc_cc(1.0/channel_rate, # Time constant
1.0, # Reference power
1.0, # Initial gain
1.0) # Maximum gain
DEMOD = demod(channel_rate, audio_decim)
# From RF to audio
self.connect(USRP, CHAN, RFSQL, AGC, DEMOD)
# Optionally add CTCSS and RSAMP if needed
tail = DEMOD
if options.ctcss != None and options.ctcss > 60.0:
CTCSS = gr.ctcss_squelch_ff(audio_rate, # Sample rate
options.ctcss) # Squelch tone
self.connect(DEMOD, CTCSS)
tail = CTCSS
if options.output_rate != audio_rate:
out_lcm = gru.lcm(audio_rate, options.output_rate)
out_interp = int(out_lcm // audio_rate)
out_decim = int(out_lcm // options.output_rate)
RSAMP = blks2.rational_resampler_fff(out_interp, out_decim)
self.connect(tail, RSAMP)
tail = RSAMP
# Send to default audio output
AUDIO = audio.sink(options.output_rate, "")
self.connect(tail, AUDIO)
def main():
parser = OptionParser(option_class=eng_option)
parser.add_option("-f", "--frequency", type="eng_float", default=None,
help="set receive frequency to Hz", metavar="Hz")
parser.add_option("-R", "--rx-subdev-spec", type="subdev",
help="select USRP Rx side A or B", metavar="SUBDEV")
parser.add_option("-c", "--calibration", type="eng_float", default=0.0,
help="set frequency offset to Hz", metavar="Hz")
parser.add_option("-g", "--gain", type="int", default=None,
help="set RF gain", metavar="dB")
parser.add_option("-m", "--modulation", type="choice", choices=('AM','FM','WFM'),
help="set modulation type (AM,FM)", metavar="TYPE")
parser.add_option("-o", "--output-rate", type="int", default=32000,
help="set audio output rate to RATE", metavar="RATE")
parser.add_option("-r", "--rf-squelch", type="eng_float", default=-50.0,
help="set RF squelch to dB", metavar="dB")
parser.add_option("-p", "--ctcss", type="float",
help="set CTCSS squelch to FREQ", metavar="FREQ")
(options, args) = parser.parse_args()
if options.frequency is None:
print "Must supply receive frequency with -f"
sys.exit(1)
if options.frequency < 1e6:
options.frequency *= 1e6
tb = app_top_block(options)
try:
tb.run()
except KeyboardInterrupt:
pass
if __name__ == "__main__":
main()
|