1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
#!/usr/bin/env python
#
# Copyright 2004,2005,2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
# print "Loading revised usrp_oscope with additional options for scopesink..."
from gnuradio import gr, gru
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from gnuradio.wxgui import stdgui2, scopesink2, form, slider
from optparse import OptionParser
import wx
import sys
from usrpm import usrp_dbid
def pick_subdevice(u):
"""
The user didn't specify a subdevice on the command line.
If there's a daughterboard on A, select A.
If there's a daughterboard on B, select B.
Otherwise, select A.
"""
if u.db[0][0].dbid() >= 0: # dbid is < 0 if there's no d'board or a problem
return (0, 0)
if u.db[1][0].dbid() >= 0:
return (1, 0)
return (0, 0)
class app_top_block(stdgui2.std_top_block):
def __init__(self, frame, panel, vbox, argv):
stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
self.frame = frame
self.panel = panel
parser = OptionParser(option_class=eng_option)
parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,
help="select USRP Rx side A or B (default=first one with a daughterboard)")
parser.add_option("-d", "--decim", type="int", default=16,
help="set fgpa decimation rate to DECIM [default=%default]")
parser.add_option("-f", "--freq", type="eng_float", default=None,
help="set frequency to FREQ", metavar="FREQ")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="set gain in dB (default is midpoint)")
parser.add_option("-8", "--width-8", action="store_true", default=False,
help="Enable 8-bit samples across USB")
parser.add_option("-C", "--basic-complex", action="store_true", default=False,
help="Use both inputs of a basicRX or LFRX as a single Complex input channel")
parser.add_option("-D", "--basic-dualchan", action="store_true", default=False,
help="Use both inputs of a basicRX or LFRX as seperate Real input channels")
parser.add_option("-n", "--frame-decim", type="int", default=1,
help="set oscope frame decimation factor to n [default=1]")
parser.add_option("-v", "--v-scale", type="eng_float", default=1000,
help="set oscope initial V/div to SCALE [default=%default]")
parser.add_option("-t", "--t-scale", type="eng_float", default=49e-6,
help="set oscope initial s/div to SCALE [default=50us]")
(options, args) = parser.parse_args()
if len(args) != 0:
parser.print_help()
sys.exit(1)
self.show_debug_info = True
# build the graph
if options.basic_dualchan:
self.num_inputs=2
else:
self.num_inputs=1
self.u = usrp.source_c(nchan=self.num_inputs,decim_rate=options.decim)
if options.rx_subdev_spec is None:
options.rx_subdev_spec = pick_subdevice(self.u)
if options.width_8:
width = 8
shift = 8
format = self.u.make_format(width, shift)
#print "format =", hex(format)
r = self.u.set_format(format)
#print "set_format =", r
# determine the daughterboard subdevice we're using
self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
if (options.basic_complex or options.basic_dualchan ):
if ((self.subdev.dbid()==usrp_dbid.BASIC_RX) or (self.subdev.dbid()==usrp_dbid.LF_RX)):
side = options.rx_subdev_spec[0] # side A = 0, side B = 1
if options.basic_complex:
#force Basic_RX and LF_RX in complex mode (use both I and Q channel)
print "Receiver daughterboard forced in complex mode. Both inputs will combined to form a single complex channel."
self.dualchan=False
if side==0:
self.u.set_mux(0x00000010) #enable adc 0 and 1 to form a single complex input on side A
else: #side ==1
self.u.set_mux(0x00000032) #enable adc 3 and 2 to form a single complex input on side B
elif options.basic_dualchan:
#force Basic_RX and LF_RX in dualchan mode (use input A for channel 0 and input B for channel 1)
print "Receiver daughterboard forced in dualchannel mode. Each input will be used to form a seperate channel."
self.dualchan=True
if side==0:
self.u.set_mux(gru.hexint(0xf0f0f1f0)) #enable adc 0, side A to form a real input on channel 0 and adc1,side A to form a real input on channel 1
else: #side ==1
self.u.set_mux(0xf0f0f3f2) #enable adc 2, side B to form a real input on channel 0 and adc3,side B to form a real input on channel 1
else:
sys.stderr.write('options basic_dualchan or basic_complex is only supported for Basic Rx or LFRX at the moment\n')
sys.exit(1)
else:
self.dualchan=False
self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
input_rate = self.u.adc_freq() / self.u.decim_rate()
self.scope = scopesink2.scope_sink_c(panel, sample_rate=input_rate,
frame_decim=options.frame_decim,
v_scale=options.v_scale,
t_scale=options.t_scale,
num_inputs=self.num_inputs)
if self.dualchan:
# deinterleave two channels from FPGA
self.di = gr.deinterleave(gr.sizeof_gr_complex)
self.connect(self.u,self.di)
self.connect((self.di,0),(self.scope,0))
self.connect((self.di,1),(self.scope,1))
else:
self.connect(self.u, self.scope)
self._build_gui(vbox)
# set initial values
if options.gain is None:
# if no gain was specified, use the mid-point in dB
g = self.subdev.gain_range()
options.gain = float(g[0]+g[1])/2
if options.freq is None:
if ((self.subdev.dbid()==usrp_dbid.BASIC_RX) or (self.subdev.dbid()==usrp_dbid.LF_RX)):
#for Basic RX and LFRX if no freq is specified you probably want 0.0 Hz and not 45 GHz
options.freq=0.0
else:
# if no freq was specified, use the mid-point
r = self.subdev.freq_range()
options.freq = float(r[0]+r[1])/2
self.set_gain(options.gain)
if self.show_debug_info:
self.myform['decim'].set_value(self.u.decim_rate())
self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate())
self.myform['dbname'].set_value(self.subdev.name())
self.myform['baseband'].set_value(0)
self.myform['ddc'].set_value(0)
if self.num_inputs==2:
self.myform['baseband2'].set_value(0)
self.myform['ddc2'].set_value(0)
if not(self.set_freq(options.freq)):
self._set_status_msg("Failed to set initial frequency")
if self.num_inputs==2:
if not(self.set_freq2(options.freq)):
self._set_status_msg("Failed to set initial frequency for channel 2")
def _set_status_msg(self, msg):
self.frame.GetStatusBar().SetStatusText(msg, 0)
def _build_gui(self, vbox):
def _form_set_freq(kv):
return self.set_freq(kv['freq'])
def _form_set_freq2(kv):
return self.set_freq2(kv['freq2'])
vbox.Add(self.scope.win, 10, wx.EXPAND)
# add control area at the bottom
self.myform = myform = form.form()
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((5,0), 0, 0)
myform['freq'] = form.float_field(
parent=self.panel, sizer=hbox, label="Center freq", weight=1,
callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
if self.num_inputs==2:
myform['freq2'] = form.float_field(
parent=self.panel, sizer=hbox, label="Center freq2", weight=1,
callback=myform.check_input_and_call(_form_set_freq2, self._set_status_msg))
hbox.Add((5,0), 0, 0)
g = self.subdev.gain_range()
myform['gain'] = form.slider_field(parent=self.panel, sizer=hbox, label="Gain",
weight=3,
min=int(g[0]), max=int(g[1]),
callback=self.set_gain)
hbox.Add((5,0), 0, 0)
vbox.Add(hbox, 0, wx.EXPAND)
self._build_subpanel(vbox)
def _build_subpanel(self, vbox_arg):
# build a secondary information panel (sometimes hidden)
# FIXME figure out how to have this be a subpanel that is always
# created, but has its visibility controlled by foo.Show(True/False)
def _form_set_decim(kv):
return self.set_decim(kv['decim'])
if not(self.show_debug_info):
return
panel = self.panel
vbox = vbox_arg
myform = self.myform
#panel = wx.Panel(self.panel, -1)
#vbox = wx.BoxSizer(wx.VERTICAL)
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((5,0), 0)
myform['decim'] = form.int_field(
parent=panel, sizer=hbox, label="Decim",
callback=myform.check_input_and_call(_form_set_decim, self._set_status_msg))
hbox.Add((5,0), 1)
myform['fs@usb'] = form.static_float_field(
parent=panel, sizer=hbox, label="Fs@USB")
hbox.Add((5,0), 1)
myform['dbname'] = form.static_text_field(
parent=panel, sizer=hbox)
hbox.Add((5,0), 1)
myform['baseband'] = form.static_float_field(
parent=panel, sizer=hbox, label="Analog BB")
hbox.Add((5,0), 1)
myform['ddc'] = form.static_float_field(
parent=panel, sizer=hbox, label="DDC")
if self.num_inputs==2:
hbox.Add((1,0), 1)
myform['baseband2'] = form.static_float_field(
parent=panel, sizer=hbox, label="BB2")
hbox.Add((1,0), 1)
myform['ddc2'] = form.static_float_field(
parent=panel, sizer=hbox, label="DDC2")
hbox.Add((5,0), 0)
vbox.Add(hbox, 0, wx.EXPAND)
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital down converter.
"""
r = usrp.tune(self.u, 0, self.subdev, target_freq)
if r:
self.myform['freq'].set_value(target_freq) # update displayed value
if self.show_debug_info:
self.myform['baseband'].set_value(r.baseband_freq)
self.myform['ddc'].set_value(r.dxc_freq)
return True
return False
def set_freq2(self, target_freq):
"""
Set the center frequency of we're interested in for the second channel.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital down converter.
"""
r = usrp.tune(self.u, 1, self.subdev, target_freq)
if r:
self.myform['freq2'].set_value(target_freq) # update displayed value
if self.show_debug_info:
self.myform['baseband2'].set_value(r.baseband_freq)
self.myform['ddc2'].set_value(r.dxc_freq)
return True
return False
def set_gain(self, gain):
self.myform['gain'].set_value(gain) # update displayed value
self.subdev.set_gain(gain)
def set_decim(self, decim):
ok = self.u.set_decim_rate(decim)
if not ok:
print "set_decim failed"
input_rate = self.u.adc_freq() / self.u.decim_rate()
self.scope.set_sample_rate(input_rate)
if self.show_debug_info: # update displayed values
self.myform['decim'].set_value(self.u.decim_rate())
self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate())
return ok
def main ():
app = stdgui2.stdapp(app_top_block, "USRP O'scope", nstatus=1)
app.MainLoop()
if __name__ == '__main__':
main ()
|