1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
#
# Copyright 2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import math
from gnuradio import gr, gru
from gnuradio.gr import hier_block_base
from gnuradio import usrp
from gnuradio import usrp1 # usrp Rev 1 and later
from gnuradio import blks
from usrpm import usrp_prims
import sys
class multi_source_align(object):
def __init__(self, fg, master_serialno,decim,nchan=2,pga_gain=0.0,cordic_freq=0.0,mux=None,align_interval=-1):
"""
Align multiple sources (usrps) using samplenumbers in the first channel.
Takes two ore more sources producing interleaved shorts.
produces nchan * nsources gr_complex output streams.
@param nchan: number of interleaved channels in source
@param align_interval: number of samples to minimally skip between alignments
default = -1 which means align only once per work call.
@param master_serial_no: serial number of the source which must be the master.
Exported sub-blocks (attributes):
master_source
slave_source
usrp_master
usrp_slave
"""
mode=usrp.FPGA_MODE_NORMAL
mode = mode | usrp_prims.bmFR_MODE_RX_COUNTING_32BIT #(1 << 2) #usrp1.FPGA_MODE_COUNTING_32BIT
align=gr.align_on_samplenumbers_ss (nchan,align_interval)
self.usrp_master = None
self.usrp_slave = None
# um is master usrp
# us is slave usrp
if mux is None:
mux=self.get_default_mux() #Note that all channels have shifted left because of the added 32 bit counter channel
u1 = usrp.source_s (1, decim, nchan, gru.hexint(mux), mode,fpga_filename="multi_2rxhb_2tx.rbf" )
u0 = usrp.source_s (0, decim, nchan, gru.hexint(mux), mode,fpga_filename="multi_2rxhb_2tx.rbf" )
print 'usrp[0] serial',u0.serial_number()
print 'usrp[1] serial',u1.serial_number()
#default, choose the second found usrp as master (which is usually the usrp which was first plugged in)
um_index=1
um=u1
us_index=0
us=u0
if (not (master_serialno is None)): #((master_serialno>0) | (master_serialno <-2)):
if (u0.serial_number() == master_serialno):
um_index=0
um=u0
us_index=1
us=u1
elif (u1.serial_number() != master_serialno):
errorstring = 'Error. requested master_serialno ' + master_serialno +' not found\n'
errorstring = errorstring + 'Available are:\n'
errorstring = errorstring + 'usrp[1] serial_no = ' + u1.serial_number() +'\n'
errorstring = errorstring + 'usrp[0] serial_no = ' + u0.serial_number() +'\n'
print errorstring
raise ValueError, errorstring
else: #default, just choose the first found usrp as master
um_index=0
um=u0
us_index=1
us=u1
self.usrp_master=um
self.usrp_slave=us
print 'usrp_master=usrp[%i] serial_no = %s' % (um_index,self.usrp_master.serial_number() ,)
print 'usrp_slave=usrp[%i] serial_no = %s' % (us_index,self.usrp_slave.serial_number() ,)
self.subdev_mAr = usrp.selected_subdev(self.usrp_master, (0,0))
self.subdev_mBr = usrp.selected_subdev(self.usrp_master, (1,0))
self.subdev_sAr = usrp.selected_subdev(self.usrp_slave, (0,0))
self.subdev_sBr = usrp.selected_subdev(self.usrp_slave, (1,0))
#throttle = gr.throttle(gr.sizeof_gr_complex, input_rate)
if not (pga_gain is None):
um.set_pga (0, pga_gain)
um.set_pga (1, pga_gain)
us.set_pga (0, pga_gain)
us.set_pga (1, pga_gain)
self.input_rate = um.adc_freq () / um.decim_rate ()
deintm=gr.deinterleave(gr.sizeof_gr_complex)
deints=gr.deinterleave(gr.sizeof_gr_complex)
nullsinkm=gr.null_sink(gr.sizeof_gr_complex)
nullsinks=gr.null_sink(gr.sizeof_gr_complex)
tocomplexm=gr.interleaved_short_to_complex()
tocomplexs=gr.interleaved_short_to_complex()
fg.connect(um,(align,0))
fg.connect(us,(align,1))
fg.connect((align,0),tocomplexm)
fg.connect((align,1),tocomplexs)
fg.connect(tocomplexm,deintm)
fg.connect(tocomplexs,deints)
fg.connect((deintm,0),nullsinkm) #The counters are not usefull for the user but must be connected to something
fg.connect((deints,0),nullsinks) #The counters are not usefull for the user but must be connected to something
if 4==nchan:
nullsinkm3=gr.null_sink(gr.sizeof_gr_complex)
nullsinks3=gr.null_sink(gr.sizeof_gr_complex)
fg.connect((deintm,3), nullsinkm3) #channel 4 is not used but must be connected
fg.connect((deints,3), nullsinks3) #channel 4 is not used but must be connected
self.fg=fg
self.master_source=deintm
self.slave_source=deints
if not (cordic_freq is None):
um.set_rx_freq (1, cordic_freq)
um.set_rx_freq (0, cordic_freq)
us.set_rx_freq (1, cordic_freq)
us.set_rx_freq (0, cordic_freq)
self.enable_master_and_slave()
# add an idle handler
self.unsynced=True
# wire the block together
#hier_block_multi_tail.__init__(self, fg, nchan,deintm,deints)
def get_default_mux(self):
return 0x10321032 # Note that all channels have shifted left because of the added 32 bit counter channel
def get_master_source_c(self):
return self.master_source
def get_slave_source_c(self):
return self.slave_source
def get_master_usrp(self):
return self.usrp_master
def get_slave_usrp(self):
return self.usrp_slave
def enable_master_and_slave(self):
# Warning, allways FIRST enable the slave before you enable the master
# This is to be sure you don't have two masters connecting to each other
# Otherwise you could ruin your hardware because the two sync outputs would be connected together
#SLAVE
#disable master, enable slave and set sync pulse to zero
reg_mask = usrp_prims.bmFR_RX_SYNC_SLAVE | usrp_prims.bmFR_RX_SYNC_MASTER | usrp_prims.bmFR_RX_SYNC
self.usrp_slave._u._write_fpga_reg_masked(usrp_prims.FR_RX_MASTER_SLAVE, usrp_prims.bmFR_RX_SYNC_SLAVE,reg_mask)
#set SYNC slave iopin on daughterboards RXA as input
oe = 0 # set rx_a_io[bitnoFR_RX_SYNC_INPUT_IOPIN] as input
oe_mask = usrp_prims.bmFR_RX_SYNC_INPUT_IOPIN
self.usrp_slave._u._write_oe(0,oe,oe_mask)
#Now it is save to enable the master
#MASTER
#enable master, disable slave and set sync pulse to zero
reg_mask = usrp_prims.bmFR_RX_SYNC_SLAVE | usrp_prims.bmFR_RX_SYNC_MASTER | usrp_prims.bmFR_RX_SYNC
self.usrp_master._u._write_fpga_reg_masked(usrp_prims.FR_RX_MASTER_SLAVE,usrp_prims.bmFR_RX_SYNC_MASTER,reg_mask)
#set SYNC master iopin on daughterboards RXA as output
oe = usrp_prims.bmFR_RX_SYNC_OUTPUT_IOPIN # set rx_a_io[bitnoFR_RX_SYNC_OUTPUT_IOPIN] as output
oe_mask = usrp_prims.bmFR_RX_SYNC_OUTPUT_IOPIN
self.usrp_master._u._write_oe(0,oe,oe_mask)
def sync_usrps(self, evt):
self.sync()
def sync(self):
result=False
result = self.usrp_master._u._write_fpga_reg_masked (usrp_prims.FR_RX_MASTER_SLAVE, usrp_prims.bmFR_RX_SYNC, usrp_prims.bmFR_RX_SYNC )
#There should be a small delay here, but the time it takes to get the sync to the usrp is long enough
#turn sync pulse off
result = result & self.usrp_master._u._write_fpga_reg_masked (usrp_prims.FR_RX_MASTER_SLAVE,0 ,usrp_prims.bmFR_RX_SYNC);
return result;
def nullsink_counters(self):
nullsinkm=gr.null_sink(gr.sizeof_gr_complex)
nullsinks=gr.null_sink(gr.sizeof_gr_complex)
self.fg.connect((self.master_source,0),nullsinkm)
self.fg.connect((self.slave_source,0),nullsinks)
def print_db_info(self):
print "MASTER RX d'board %s" % (self.subdev_mAr.side_and_name(),)
print "MASTER RX d'board %s" % (self.subdev_mBr.side_and_name(),)
#print "TX d'board %s" % (self.subdev_At.side_and_name(),)
#print "TX d'board %s" % (self.subdev_Bt.side_and_name(),)
print "SLAVE RX d'board %s" % (self.subdev_sAr.side_and_name(),)
print "SLAVE RX d'board %s" % (self.subdev_sBr.side_and_name(),)
#print "TX d'board %s" % (self.subdev_At.side_and_name(),)
#print "TX d'board %s" % (self.subdev_Bt.side_and_name(),)
def tune_all_rx(self,target_freq):
result = True
r1 = usrp.tune(self.usrp_master, 0, self.subdev_mAr, target_freq)
if r1 is None:
result=False
r2 = usrp.tune(self.usrp_master, 1, self.subdev_mBr, target_freq)
if r2 is None:
result=False
r3 = usrp.tune(self.usrp_slave, 0, self.subdev_sAr, target_freq)
if r3 is None:
result=False
r4 = usrp.tune(self.usrp_slave, 1, self.subdev_sBr, target_freq)
if r4 is None:
result=False
return result,r1,r2,r3,r4
def set_gain_all_rx(self, gain):
self.subdev_mAr.set_gain(gain)
self.subdev_mBr.set_gain(gain)
self.subdev_sAr.set_gain(gain)
self.subdev_sBr.set_gain(gain)
|