1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
#
# Copyright 2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import usrp1, gru, eng_notation
import time, math, weakref
from usrpm import usrp_dbid
import db_base
import db_instantiator
from usrpm.usrp_fpga_regs import *
# Convenience function
n2s = eng_notation.num_to_str
# d'board i/o pin defs
# TX IO Pins
HB_PA_OFF = (1 << 15) # 5GHz PA, 1 = off, 0 = on
LB_PA_OFF = (1 << 14) # 2.4GHz PA, 1 = off, 0 = on
ANTSEL_TX1_RX2 = (1 << 13) # 1 = Ant 1 to TX, Ant 2 to RX
ANTSEL_TX2_RX1 = (1 << 12) # 1 = Ant 2 to TX, Ant 1 to RX
TX_EN = (1 << 11) # 1 = TX on, 0 = TX off
TX_OE_MASK = HB_PA_OFF|LB_PA_OFF|ANTSEL_TX1_RX2|ANTSEL_TX2_RX1|TX_EN
TX_SAFE_IO = HB_PA_OFF|LB_PA_OFF|ANTSEL_TX1_RX2
# RX IO Pins
LOCKDET = (1 << 15) # This is an INPUT!!!
EN = (1 << 14)
RX_EN = (1 << 13) # 1 = RX on, 0 = RX off
RX_HP = (1 << 12)
B1 = (1 << 11)
B2 = (1 << 10)
B3 = (1 << 9)
B4 = (1 << 8)
B5 = (1 << 7)
B6 = (1 << 6)
B7 = (1 << 5)
RX_OE_MASK = EN|RX_EN|RX_HP|B1|B2|B3|B4|B5|B6|B7
RX_SAFE_IO = EN
# ------------------------------------------------------------------------
# A few comments about the XCVR2450:
#
# It is half-duplex. I.e., transmit and receive are mutually exclusive.
# There is a single LO for both the Tx and Rx sides.
# For our purposes the board is always either receiving or transmitting.
#
# Each board is uniquely identified by the *USRP hardware* instance and side
# This dictionary holds a weak reference to existing board controller so it
# can be created or retrieved as needed.
_xcvr2450_inst = weakref.WeakValueDictionary()
def _get_or_make_xcvr2450(usrp, which):
key = (usrp.serial_number(), which)
if not _xcvr2450_inst.has_key(key):
print "Creating new xcvr2450 instance"
inst = xcvr2450(usrp, which)
_xcvr2450_inst[key] = inst
else:
print "Using existing xcvr2450 instance"
inst = _xcvr2450_inst[key]
return inst
# ------------------------------------------------------------------------
# Common, shared object for xcvr2450 board. Transmit and receive classes
# operate on an instance of this; one instance is created per physical
# daughterboard.
class xcvr2450(object):
def __init__(self, usrp, which):
print "xcvr2450: __init__ with %s: %d" % (usrp.serial_number(), which)
self.u = usrp
self.which = which
# Use MSB with no header
self.spi_format = usrp1.SPI_FMT_MSB | usrp1.SPI_FMT_HDR_0
self.spi_enable = (usrp1.SPI_ENABLE_RX_A, usrp1.SPI_ENABLE_RX_B)[which]
# Sane defaults
self.mimo = 1 # 0 = OFF, 1 = ON
self.int_div = 192 # 128 = min, 255 = max
self.frac_div = 0 # 0 = min, 65535 = max
self.highband = 0 # 0 = freq <= 5.4e9, 1 = freq > 5.4e9
self.five_gig = 0 # 0 = freq <= 3.e9, 1 = freq > 3e9
self.cp_current = 0 # 0 = 2mA, 1 = 4mA
self.ref_div = 4 # 1 to 7
self.rssi_hbw = 0 # 0 = 2 MHz, 1 = 6 MHz
self.txlpf_bw = 1 # 1 = 12 MHz, 2 = 18 MHz, 3 = 24 MHz
self.rxlpf_bw = 1 # 0 = 7.5 MHz, 1 = 9.5 MHz, 2 = 14 MHz, 3 = 18 MHz
self.rxlpf_fine = 2 # 0 = 90%, 1 = 95%, 2 = 100%, 3 = 105%, 4 = 110%
self.rxvga_ser = 1 # 0 = RXVGA controlled by B7:1, 1 = controlled serially
self.rssi_range = 1 # 0 = low range (datasheet typo), 1 = high range (0.5V - 2.0V)
self.rssi_mode = 1 # 0 = enable follows RXHP, 1 = enabled
self.rssi_mux = 0 # 0 = RSSI, 1 = TEMP
self.rx_hp_pin = 0 # 0 = Fc set by rx_hpf, 1 = 600 KHz
self.rx_hpf = 0 # 0 = 100Hz, 1 = 30KHz
self.rx_ant = 0 # 0 = Ant. #1, 1 = Ant. #2
self.tx_ant = 0 # 0 = Ant. #1, 1 = Ant. #2
self.txvga_ser = 1 # 0 = TXVGA controlled by B6:1, 1 = controlled serially
self.tx_driver_lin = 2 # 0 = 50% (worst linearity), 1 = 63%, 2 = 78%, 3 = 100% (best lin)
self.tx_vga_lin = 2 # 0 = 50% (worst linearity), 1 = 63%, 2 = 78%, 3 = 100% (best lin)
self.tx_upconv_lin = 2 # 0 = 50% (worst linearity), 1 = 63%, 2 = 78%, 3 = 100% (best lin)
self.tx_bb_gain = 3 # 0 = maxgain-5dB, 1 = max-3dB, 2 = max-1.5dB, 3 = max
self.pabias_delay = 15 # 0 = 0, 15 = 7uS
self.pabias = 0 # 0 = 0 uA, 63 = 315uA
self.rx_rf_gain = 0 # 0 = 0dB, 1 = 0dB, 2 = 15dB, 3 = 30dB
self.rx_bb_gain = 16 # 0 = min, 31 = max (0 - 62 dB)
self.txgain = 63 # 0 = min, 63 = max
# Initialize GPIO and ATR
self.tx_write_io(TX_SAFE_IO, TX_OE_MASK)
self.tx_write_oe(TX_OE_MASK, ~0)
self.tx_set_atr_txval(TX_SAFE_IO)
self.tx_set_atr_rxval(TX_SAFE_IO)
self.tx_set_atr_mask(TX_OE_MASK)
self.rx_write_io(RX_SAFE_IO, RX_OE_MASK)
self.rx_write_oe(RX_OE_MASK, ~0)
self.rx_set_atr_rxval(RX_SAFE_IO)
self.rx_set_atr_txval(RX_SAFE_IO)
self.rx_set_atr_mask(RX_OE_MASK)
# Initialize chipset
# TODO: perform reset sequence to ensure power up defaults
self.set_reg_standby()
self.set_reg_bandselpll()
self.set_reg_cal()
self.set_reg_lpf()
self.set_reg_rxrssi_ctrl()
self.set_reg_txlin_gain()
self.set_reg_pabias()
self.set_reg_rxgain()
self.set_reg_txgain()
self.set_freq(2.45e9)
def __del__(self):
print "xcvr2450: __del__"
self.tx_set_atr_txval(TX_SAFE_IO)
self.tx_set_atr_rxval(TX_SAFE_IO)
self.rx_set_atr_rxval(RX_SAFE_IO)
self.rx_set_atr_txval(RX_SAFE_IO)
# --------------------------------------------------------------------
# These methods set the MAX2829 onboard registers over the SPI bus.
# The SPI format is 18 bits, with the four LSBs holding the register no.
# Thus, the shift values used here are the D0-D13 values from the data
# sheet, *plus* four.
# Standby (2)
def set_reg_standby(self):
self.reg_standby = (
(self.mimo<<17) |
(1<<16) |
(1<<6) |
(1<<5) |
(1<<4) | 2)
self.send_reg(self.reg_standby)
# Integer-Divider Ratio (3)
def set_reg_int_divider(self):
self.reg_int_divider = (
((self.frac_div & 0x03)<<16) |
(self.int_div<<4) | 3)
self.send_reg(self.reg_int_divider)
# Fractional-Divider Ratio (4)
def set_reg_frac_divider(self):
self.reg_frac_divider = ((self.frac_div & 0xfffc)<<2) | 4
self.send_reg(self.reg_frac_divider)
# Band Select and PLL (5)
def set_reg_bandselpll(self):
self.reg_bandselpll = (
(self.mimo<<17) |
(1<<16) |
(1<<15) |
(1<<11) |
(self.highband<<10) |
(self.cp_current<<9) |
(self.ref_div<<5) |
(self.five_gig<<4) | 5)
self.send_reg(self.reg_bandselpll)
# Calibration (6)
def set_reg_cal(self):
# FIXME do calibration
self.reg_cal = (1<<14)|6
self.send_reg(self.reg_cal)
# Lowpass Filter (7)
def set_reg_lpf(self):
self.reg_lpf = (
(self.rssi_hbw<<15) |
(self.txlpf_bw<<10) |
(self.rxlpf_bw<<9) |
(self.rxlpf_fine<<4) | 7)
self.send_reg(self.reg_lpf)
# Rx Control/RSSI (8)
def set_reg_rxrssi_ctrl(self):
self.reg_rxrssi_ctrl = (
(self.rxvga_ser<<16) |
(self.rssi_range<<15) |
(self.rssi_mode<<14) |
(self.rssi_mux<<12) |
(1<<9) |
(self.rx_hpf<<6) |
(1<<4) | 8)
self.send_reg(self.reg_rxrssi_ctrl)
# Tx Linearity/Baseband Gain (9)
def set_reg_txlin_gain(self):
self.reg_txlin_gain = (
(self.txvga_ser<<14) |
(self.tx_driver_lin<<12) |
(self.tx_vga_lin<<10) |
(self.tx_upconv_lin<<6) |
(self.tx_bb_gain<<4) | 9)
self.send_reg(self.reg_txlin_gain)
# PA Bias DAC (10)
def set_reg_pabias(self):
self.reg_pabias = (
(self.pabias_delay<<10) |
(self.pabias<<4) | 10)
self.send_reg(self.reg_pabias)
# Rx Gain (11)
def set_reg_rxgain(self):
self.reg_rxgain = (
(self.rx_rf_gain<<9) |
(self.rx_bb_gain<<4) | 11)
self.send_reg(self.reg_rxgain)
# Tx Gain (12)
def set_reg_txgain(self):
self.reg_txgain = (self.txgain<<4) | 12
self.send_reg(self.reg_txgain)
# Send register write to SPI
def send_reg(self, v):
# Send 24 bits, it keeps last 18 clocked in
s = ''.join((chr((v >> 16) & 0xff),
chr((v >> 8) & 0xff),
chr(v & 0xff)))
self.u._write_spi(0, self.spi_enable, self.spi_format, s)
print "xcvr2450: Setting reg %d to %06X" % ((v&15), v)
# --------------------------------------------------------------------
# These methods control the GPIO bus. Since the board has to access
# both the io_rx_* and io_tx_* pins, we define our own methods to do so.
# This bypasses any code in db_base.
#
# The board operates in ATR mode, always. Thus, when the board is first
# initialized, it is in receive mode, until bits show up in the TX FIFO.
#
def tx_write_oe(self, value, mask):
return self.u._write_fpga_reg((FR_OE_0, FR_OE_2)[self.which],
gru.hexint((mask << 16) | value))
def tx_write_io(self, value, mask):
return self.u._write_fpga_reg((FR_IO_0, FR_IO_2)[self.which],
gru.hexint((mask << 16) | value))
def tx_read_io(self):
t = self.u._read_fpga_reg((FR_RB_IO_RX_A_IO_TX_A, FR_RB_IO_RX_B_IO_TX_B)[self.which])
return t & 0xffff
def rx_write_oe(self, value, mask):
return self.u._write_fpga_reg((FR_OE_1, FR_OE_3)[self.which],
gru.hexint((mask << 16) | value))
def rx_write_io(self, value, mask):
return self.u._write_fpga_reg((FR_IO_1, FR_IO_3)[self.which],
gru.hexint((mask << 16) | value))
def rx_read_io(self):
t = self.u._read_fpga_reg((FR_RB_IO_RX_A_IO_TX_A, FR_RB_IO_RX_B_IO_TX_B)[self.which])
return (t >> 16) & 0xffff
def tx_set_atr_mask(self, v):
return self.u._write_fpga_reg((FR_ATR_MASK_0,FR_ATR_MASK_2)[self.which],
gru.hexint(v))
def tx_set_atr_txval(self, v):
return self.u._write_fpga_reg((FR_ATR_TXVAL_0,FR_ATR_TXVAL_2)[self.which],
gru.hexint(v))
def tx_set_atr_rxval(self, v):
return self.u._write_fpga_reg((FR_ATR_RXVAL_0,FR_ATR_RXVAL_2)[self.which],
gru.hexint(v))
def rx_set_atr_mask(self, v):
return self.u._write_fpga_reg((FR_ATR_MASK_1,FR_ATR_MASK_3)[self.which],
gru.hexint(v))
def rx_set_atr_txval(self, v):
return self.u._write_fpga_reg((FR_ATR_TXVAL_1,FR_ATR_TXVAL_3)[self.which],
gru.hexint(v))
def rx_set_atr_rxval(self, v):
return self.u._write_fpga_reg((FR_ATR_RXVAL_1,FR_ATR_RXVAL_3)[self.which],
gru.hexint(v))
def set_gpio(self):
# We calculate four values:
#
# io_rx_while_rx: what to drive onto io_rx_* when receiving
# io_rx_while_tx: what to drive onto io_rx_* when transmitting
# io_tx_while_rx: what to drive onto io_tx_* when receiving
# io_tx_while_tx: what to drive onto io_tx_* when transmitting
#
# B1-B7 is ignored as gain is set serially for now.
rx_hp = (0, RX_HP)[self.rx_hp_pin]
tx_antsel = (ANTSEL_TX1_RX2, ANTSEL_TX2_RX1)[self.tx_ant]
rx_antsel = (ANTSEL_TX1_RX2, ANTSEL_TX2_RX1)[self.rx_ant]
tx_pa_sel = (HB_PA_OFF, LB_PA_OFF)[self.five_gig]
io_rx_while_rx = EN|rx_hp|RX_EN
io_rx_while_tx = EN|rx_hp
io_tx_while_rx = HB_PA_OFF|LB_PA_OFF|rx_antsel
io_tx_while_tx = tx_pa_sel|tx_antsel|TX_EN
self.rx_set_atr_rxval(io_rx_while_rx)
self.rx_set_atr_txval(io_rx_while_tx)
self.tx_set_atr_rxval(io_tx_while_rx)
self.tx_set_atr_txval(io_tx_while_tx)
print "GPIO: RXRX=%04X RXTX=%04X TXRX=%04X TXTX=%04X" % (
io_rx_while_rx, io_rx_while_tx, io_tx_while_rx, io_tx_while_tx)
# --------------------------------------------------------------------
# These methods set control the high-level operating parameters.
def set_freq(self, target_freq):
if target_freq > 3e9:
self.five_gig = 1
self.ref_div = 2
scaler = 4.0/5.0
else:
self.five_gig = 0
self.ref_div = 2
scaler = 4.0/3.0;
if target_freq > 5.4e9:
self.highband = 1
else:
self.highband = 0
vco_freq = target_freq*scaler;
#ref_clk = self.u.fpga_master_clock_freq() # Assumes AD9515 is bypassed
ref_clk = 32e6 # AD9515 set up as div by 2
phdet_freq = ref_clk/self.ref_div
div = vco_freq/phdet_freq
self.int_div = int(math.floor(div))
self.frac_div = int((div-self.int_div)*65536.0)
actual_freq = phdet_freq*(self.int_div+(self.frac_div/65536.0))/scaler
print "RF=%s VCO=%s R=%d PHD=%s DIV=%3.5f I=%3d F=%5d ACT=%s" % (
n2s(target_freq), n2s(vco_freq), self.ref_div, n2s(phdet_freq),
div, self.int_div, self.frac_div, n2s(actual_freq))
self.set_gpio()
self.set_reg_int_divider()
self.set_reg_frac_divider()
self.set_reg_bandselpll()
ok = self.lock_detect()
print "lock detect:", ok
if(not ok):
ok = self.lock_detect()
print "lock detect:", ok
return (ok, actual_freq)
def lock_detect(self):
"""
@returns: the value of the VCO/PLL lock detect bit.
@rtype: 0 or 1
"""
if self.rx_read_io() & LOCKDET:
return True
else: # Give it a second chance
if self.rx_read_io() & LOCKDET:
return True
else:
return False
def set_rx_gain(self, gain):
if gain < 0.0: gain = 0.0
if gain > 92.0: gain = 92.0
# Split the gain between RF and baseband
# This is experimental, not prescribed
if gain < 31.0:
self.rx_rf_gain = 0 # 0 dB RF gain
self.rx_bb_gain = int(gain/2.0)
if gain >= 30.0 and gain < 60.5:
self.rx_rf_gain = 2 # 15 dB RF gain
self.rx_bb_gain = int((gain-15.0)/2.0)
if gain >= 60.5:
self.rx_rf_gain = 3 # 30.5 dB RF gain
self.rx_bb_gain = int((gain-30.5)/2.0)
self.set_reg_rxgain()
def set_tx_gain(self, gain):
if gain < 0.0: gain = 0.0
if gain > 30.0: gain = 30.0
self.txgain = int((gain/30.0)*63)
self.set_reg_txgain()
class db_xcvr2450_base(db_base.db_base):
"""
Abstract base class for all xcvr2450 boards.
Derive board specific subclasses from db_xcvr2450_base_{tx,rx}
"""
def __init__(self, usrp, which):
"""
@param usrp: instance of usrp.source_c
@param which: which side: 0 or 1 corresponding to side A or B respectively
@type which: int
"""
# sets _u _which _tx and _slot
db_base.db_base.__init__(self, usrp, which)
self.xcvr = _get_or_make_xcvr2450(usrp, which)
def set_freq(self, target_freq):
"""
@returns (ok, actual_baseband_freq) where:
ok is True or False and indicates success or failure,
actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
"""
return self.xcvr.set_freq(target_freq)
def is_quadrature(self):
"""
Return True if this board requires both I & Q analog channels.
This bit of info is useful when setting up the USRP Rx mux register.
"""
return True
def freq_range(self):
return (2.4e9, 6e9, 1e6)
def set_freq(self, target_freq):
return self.xcvr.set_freq(target_freq)
# ----------------------------------------------------------------
class db_xcvr2450_tx(db_xcvr2450_base):
def __init__(self, usrp, which):
"""
@param usrp: instance of usrp.sink_c
@param which: 0 or 1 corresponding to side TX_A or TX_B respectively.
"""
print "db_xcvr2450_tx: __init__"
db_xcvr2450_base.__init__(self, usrp, which)
def gain_range(self):
return (0, 30, (30.0/63.0))
def set_gain(self, gain):
return self.xcvr.set_tx_gain(gain)
def i_and_q_swapped(self):
return True
class db_xcvr2450_rx(db_xcvr2450_base):
def __init__(self, usrp, which):
"""
@param usrp: instance of usrp.source_c
@param which: 0 or 1 corresponding to side RX_A or RX_B respectively.
"""
print "db_xcvr2450_rx: __init__"
db_xcvr2450_base.__init__(self, usrp, which)
def gain_range(self):
return (0.0, 92.0, 1)
def set_gain(self, gain):
return self.xcvr.set_rx_gain(gain)
#------------------------------------------------------------
# hook these daughterboard classes into the auto-instantiation framework
db_instantiator.add(usrp_dbid.XCVR2450_TX, lambda usrp, which : (db_xcvr2450_tx(usrp, which),))
db_instantiator.add(usrp_dbid.XCVR2450_RX, lambda usrp, which : (db_xcvr2450_rx(usrp, which),))
|