summaryrefslogtreecommitdiff
path: root/gr-usrp/src/db_dtt768.py
blob: dd342bd20dacd0dd3bdafc5a3eeb79810ddbdf75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#
# Copyright 2005 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

__all__ = ['tv_rx']

import math
from usrpm import usrp_dbid
import db_base
import db_instantiator

def int_seq_to_str(seq):
    """convert a sequence of integers into a string"""
    return ''.join (map (chr, seq))

def str_to_int_seq(str):
    """convert a string to a list of integers"""
    return map (ord, str)

def control_byte_4():
    C = 0   # Charge Pump Current, no info on how to choose
    R = 4   # 125 kHz fref
    

    ATP = 7  # Disable internal AGC
    return 0x80 | C<<5 | R

def control_byte_5(freq,agcmode = 1):
    if(agcmode):
        if freq < 150e6:
            return 0x3B
        elif freq < 420e6:
            return 0x7E
        else:
            return 0xB7
    else:
        if freq < 150e6:
            return 0x39
        elif freq < 420e6:
            return 0x7C
        else:
            return 0xB5
        
def control_byte_6():
    ATC = 0   # AGC time constant = 100ms, 1 = 3S
    IFE = 1   # IF AGC amplifier enable
    AT = 0    # AGC control, ???
    
    return ATC << 5 | IFE << 4 | AT

def control_byte_7():
    SAS = 1  # SAW Digital mode
    AGD = 1  # AGC disable
    ADS = 0  # AGC detector into ADC converter
    T = 0    # Test mode, undocumented
    return SAS << 7 | AGD << 5 | ADS << 4 | T

class db_dtt768(db_base.db_base):
    def __init__(self, usrp, which):
        """
        Control custom DTT76803-based daughterboard.
        
        @param usrp: instance of usrp.source_c
        @param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
        @type which: int
        """
        # sets _u and _which
        db_base.db_base.__init__(self, usrp, which)

        self._i2c_addr = (0x60, 0x62)[which]
        self._IF = 44e6
        
        self.f_ref = 125e3
        self._inverted = False  
        
        g = self.gain_range()                  # initialize gain
        self.set_gain(float(g[0]+g[1]) / 2)

        self.bypass_adc_buffers(False)
        
    # Gain setting
    def _set_rfagc(self,gain):
        assert gain <= 60 and gain >= 0
        # FIXME this has a 0.5V step between gain = 60 and gain = 59.
        # Why are there two cases instead of a single linear case?
        if gain == 60:
            voltage = 4
        else:
            voltage = gain/60.0 * 2.25 + 1.25
        dacword = int(4096*voltage/1.22/3.3)    # 1.22 = opamp gain

        assert dacword>=0 and dacword<4096
        self._u.write_aux_dac(self._which, 1, dacword)

    def _set_ifagc(self,gain):
        assert gain <= 35 and gain >= 0
        voltage = gain/35.0 * 2.1 + 1.4
        dacword = int(4096*voltage/1.22/3.3)    # 1.22 = opamp gain

        assert dacword>=0 and dacword<4096
        self._u.write_aux_dac(self._which, 0, dacword)

    def _set_pga(self,pga_gain):
        assert pga_gain >=0 and pga_gain <=20
        if(self._which == 0):
            self._u.set_pga (0, pga_gain)
        else:
            self._u.set_pga (2, pga_gain)
            
    def gain_range(self):
        return (0, 115, 1)
    
    def set_gain(self,gain):
        assert gain>=0 and gain<=115
        if gain>60:
            rfgain = 60
            gain = gain - 60
        else:
            rfgain = gain
            gain = 0
        if gain > 35:
            ifgain = 35
            gain = gain - 35
        else:
            ifgain = gain
            gain = 0
        pgagain = gain
        self._set_rfagc(rfgain)
        self._set_ifagc(ifgain)
        self._set_pga(pgagain)
        
    def freq_range(self):
        return (44e6, 900e6, 10e3)

    def set_freq(self, target_freq):
        """
        @returns (ok, actual_baseband_freq) where:
           ok is True or False and indicates success or failure,
           actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
        """
        r = self.freq_range()
        if target_freq < r[0] or target_freq > r[1]:
            return (False, 0)
        
        target_lo_freq = target_freq + self._IF;  # High side mixing

        divisor = int(0.5+(target_lo_freq / self.f_ref))
        actual_lo_freq = self.f_ref*divisor

        if (divisor & ~0x7fff) != 0:		# must be 15-bits or less
            return (False, 0)
        
        # build i2c command string
        buf = [0] * 6
        buf[0] = (divisor >> 8) & 0xff          # DB1
        buf[1] = divisor & 0xff                 # DB2
        buf[2] = control_byte_4()
        buf[3] = control_byte_5(target_freq)
        buf[4] = control_byte_6()
        buf[5] = control_byte_7()

        ok = self._u.write_i2c(self._i2c_addr, int_seq_to_str (buf))

        self.freq = actual_lo_freq - self._IF
        
        return (ok, actual_lo_freq)

    def is_quadrature(self):
        """
        Return True if this board requires both I & Q analog channels.

        This bit of info is useful when setting up the USRP Rx mux register.
        """
        return False

    def spectrum_inverted(self):
        """
        The 43.75 MHz version is inverted
        """
        return self._inverted

# hook this daughterboard class into the auto-instantiation framework

# With DTT76803
db_instantiator.add(usrp_dbid.DTT768,
                    lambda usrp, which : (db_dtt768(usrp, which),))