1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
#
# Copyright 2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import math
import usrp_dbid
import db_base
import db_instantiator
def int_seq_to_str (seq):
"""convert a sequence of integers into a string"""
return ''.join (map (chr, seq))
def str_to_int_seq (str):
"""convert a string to a list of integers"""
return map (ord, str)
class db_dbs_rx (db_base.db_base):
def __init__ (self, usrp, which):
"""
Control DBS receiver based USRP daughterboard.
@param usrp: instance of usrp.source_c
@param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
@type which: int
"""
# sets _u and _which
db_base.db_base.__init__(self, usrp, which)
self._u._write_oe(self._which,0x0001,0x0001)
self.i2c_addr = (0x67, 0x65)[self._which]
# set basic parameters
# set default values
self.n = 950
self.div2 = 0
self.osc = 5
self.cp = 3
self.r = 4
self.r_int = 1
self.fdac = 127
self.m = 2
self.dl = 0
self.ade = 0
self.adl = 0
self.gc2 = 31
self.diag = 0
# FIXME this should be in the core dboard class
self.refclk_divisor = 16
self._enable_refclk(True)
g = self.gain_range()
self.set_gain(float(g[0]+g[1]) / 2)
self.bypass_adc_buffers(True)
def __del__(self):
if self._u:
self._enable_refclk(False)
def _write_reg (self, regno, v):
"""regno is in [0,5], v is value to write to register"""
assert (0 <= regno and regno <= 5)
self._u.write_i2c (self.i2c_addr, int_seq_to_str ((regno, v)))
def _write_regs (self, starting_regno, vals):
"""starting_regno is in [0,5],
vals is a seq of integers to write to consecutive registers"""
self._u.write_i2c (self.i2c_addr,
int_seq_to_str ((starting_regno,) + tuple (vals)))
def _read_status (self):
"""If successful, return list of two ints: [status_info, filter_DAC]"""
s = self._u.read_i2c (self.i2c_addr, 2)
if len (s) != 2:
return None
return str_to_int_seq (s)
def _send_reg(self,regno):
assert (0 <= regno and regno <= 5)
if regno == 0:
self._write_reg(0,(self.div2<<7) + (self.n>>8))
if regno == 1:
self._write_reg(1,self.n & 255)
if regno == 2:
self._write_reg(2,self.osc + (self.cp<<3) + (self.r_int<<5))
if regno == 3:
self._write_reg(3,self.fdac)
if regno == 4:
self._write_reg(4,self.m + (self.dl<<5) + (self.ade<<6) + (self.adl<<7))
if regno == 5:
self._write_reg(5,self.gc2 + (self.diag<<5))
# BW setting
def _set_m(self,m):
assert m>0 and m<32
self.m = m
self._send_reg(4)
def _set_fdac(self,fdac):
assert fdac>=0 and fdac<128
self.fdac = fdac
self._send_reg(3)
def set_bw (self, bw):
#assert (bw>=4e6 and bw<=33e6)
assert (bw>=1e6 and bw<=33e6)
if bw >= 4e6:
m_max = int(min(31,math.floor(self._refclk_freq()/1e6)))
elif bw >= 2e6: # Outside of Specs!
m_max = int(min(31,math.floor(self._refclk_freq()/.5e6)))
else: # Way outside of Specs!
m_max = int(min(31,math.floor(self._refclk_freq()/.25e6)))
m_min = int(math.ceil(self._refclk_freq()/2.5e6))
m_test = m_max
while m_test >= m_min:
fdac_test = int(round(((bw * m_test / self._refclk_freq())-4)/.145))
if fdac_test>127:
m_test = m_test - 1
else:
break
if (m_test>=m_min and fdac_test >=0):
self._set_m(m_test)
self._set_fdac(fdac_test)
return (self.m,self.fdac,self._refclk_freq()/self.m*(4+0.145*self.fdac))
else:
print "Failed to set bw"
# Gain setting
def _set_dl(self,dl):
assert dl == 0 or dl == 1
self.dl = dl
self._send_reg(4)
def _set_gc2(self,gc2):
assert gc2<32 and gc2>=0
self.gc2 = gc2
self._send_reg(5)
def _set_gc1(self,gc1):
assert gc1>=0 and gc1<4096
self.gc1 = gc1
self._u.write_aux_dac(self._which,0,int(gc1))
def _set_pga(self, pga_gain):
assert pga_gain >=0 and pga_gain <=20
if(self._which == 0):
self._u.set_pga (0, pga_gain)
self._u.set_pga (1, pga_gain)
else:
self._u.set_pga (2, pga_gain)
self._u.set_pga (3, pga_gain)
def gain_range(self):
return (0, 104, 1)
def set_gain(self,gain):
if not (gain>=0 and gain<105):
raise ValueError, "gain out of range"
gc1 = 0
gc2 = 0
dl = 0
pga = 0
if gain <56:
gc1 = int((-gain*1.85/56.0 + 2.6)*4096.0/3.3)
gain = 0
else:
gc1 = 0
gain = gain - 56
if gain < 24:
gc2 = int(round(31.0 * (1-gain/24.0)))
gain = 0
else:
gc2 = 0
gain = gain - 24
if gain >= 4.58:
dl = 1
gain = gain - 4.58
pga = gain
self._set_gc1(gc1)
self._set_gc2(gc2)
self._set_dl(dl)
self._set_pga(pga)
# Frequency setting
def _set_osc(self,osc):
assert osc>=0 and osc<8
self.osc = osc
self._send_reg(2)
def _set_cp(self,cp):
assert cp>=0 and cp<4
self.cp = cp
self._send_reg(2)
def _set_n(self,n):
assert n>256 and n<32768
self.n = n
self._send_reg(0)
self._send_reg(1)
def _set_div2(self,div2):
assert div2 == 0 or div2 == 1
self.div2 = div2
self._send_reg(0)
def _set_r(self,r):
assert r>=0 and r<128
self.r = r
self.r_int = int(round(math.log10(r)/math.log10(2)) - 1)
self._send_reg(2)
# FIXME How do we handle ADE and ADL properly?
def _set_ade(self,ade):
assert ade == 0 or ade == 1
self.ade = ade
self._send_reg(4)
def freq_range(self):
return (500e6, 2.6e9, 1e6)
def _refclk_divisor(self):
"""
Return value to stick in REFCLK_DIVISOR register
"""
return 16
def set_freq(self, freq):
"""
Set the frequency.
@param freq: target frequency in Hz
@type freq: float
@returns (ok, actual_baseband_freq) where:
ok is True or False and indicates success or failure,
actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
"""
if not (freq>=500e6 and freq<=2.6e9):
return (False, 0)
if(freq<1150e6):
self._set_div2(0)
vcofreq = 4 * freq
else:
self._set_div2(1)
vcofreq = 2 * freq
self._set_ade(1)
rmin=max(2,self._refclk_freq()/2e6)
rmax=min(128,self._refclk_freq()/150e3)
r = 2
n=0
best_r = 2
best_n =0
best_delta = 10e6
while r <= rmax:
n = round(freq/(self._refclk_freq()/r))
if r<rmin or n<256:
r = r * 2
continue
delta = abs(n*self._refclk_freq()/r - freq)
if delta < 75e3:
best_r = r
best_n = n
break
if delta < best_delta*0.9:
best_r = r
best_n = n
best_delta = delta
r = r * 2
self._set_r(int(best_r))
self._set_n(int(round(best_n)))
if vcofreq < 2433e6:
vco = 0
elif vcofreq < 2711e6:
vco=1
elif vcofreq < 3025e6:
vco=2
elif vcofreq < 3341e6:
vco=3
elif vcofreq < 3727e6:
vco=4
elif vcofreq < 4143e6:
vco=5
elif vcofreq < 4493e6:
vco=6
else:
vco=7
self._set_osc(vco)
# Set CP current
adc_val = 0
while adc_val == 0 or adc_val == 7:
(byte1,byte2) = self._read_status()
adc_val = byte1 >> 2
if(adc_val == 0):
if vco <= 0:
return (False, 0)
else:
vco = vco - 1
elif(adc_val == 7):
if(vco >= 7):
return (False, 0)
else:
vco = vco + 1
self._set_osc(vco)
if adc_val == 1 or adc_val == 2:
self._set_cp(1)
elif adc_val == 3 or adc_val == 4:
self._set_cp(2)
else:
self._set_cp(3)
return (True, self.n * self._refclk_freq() / self.r)
def is_quadrature(self):
"""
Return True if this board requires both I & Q analog channels.
This bit of info is useful when setting up the USRP Rx mux register.
"""
return True
# hook this daughterboard class into the auto-instantiation framework
db_instantiator.add(usrp_dbid.DBS_RX, lambda usrp, which : (db_dbs_rx(usrp, which),))
|