1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
#!/usr/bin/env python
#
# Copyright 2008,2009,2011,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
DESC_KEY = 'desc'
SAMP_RATE_KEY = 'samp_rate'
LINK_RATE_KEY = 'link_rate'
GAIN_KEY = 'gain'
TX_FREQ_KEY = 'tx_freq'
DSP_FREQ_KEY = 'dsp_freq'
RF_FREQ_KEY = 'rf_freq'
AMPLITUDE_KEY = 'amplitude'
AMPL_RANGE_KEY = 'ampl_range'
WAVEFORM_FREQ_KEY = 'waveform_freq'
WAVEFORM_OFFSET_KEY = 'waveform_offset'
WAVEFORM2_FREQ_KEY = 'waveform2_freq'
FREQ_RANGE_KEY = 'freq_range'
GAIN_RANGE_KEY = 'gain_range'
TYPE_KEY = 'type'
def setter(ps, key, val): ps[key] = val
from gnuradio import gr, gru, uhd, eng_notation
from gnuradio.gr.pubsub import pubsub
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
n2s = eng_notation.num_to_str
waveforms = { gr.GR_SIN_WAVE : "Complex Sinusoid",
gr.GR_CONST_WAVE : "Constant",
gr.GR_GAUSSIAN : "Gaussian Noise",
gr.GR_UNIFORM : "Uniform Noise",
"2tone" : "Two Tone",
"sweep" : "Sweep" }
#
# GUI-unaware GNU Radio flowgraph. This may be used either with command
# line applications or GUI applications.
#
class top_block(gr.top_block, pubsub):
def __init__(self, options, args):
gr.top_block.__init__(self)
pubsub.__init__(self)
self._verbose = options.verbose
#initialize values from options
self._setup_usrpx(options)
self[SAMP_RATE_KEY] = options.samp_rate
self[TX_FREQ_KEY] = options.tx_freq
self[AMPLITUDE_KEY] = options.amplitude
self[WAVEFORM_FREQ_KEY] = options.waveform_freq
self[WAVEFORM_OFFSET_KEY] = options.offset
self[WAVEFORM2_FREQ_KEY] = options.waveform2_freq
self[DSP_FREQ_KEY] = 0
self[RF_FREQ_KEY] = 0
#subscribe set methods
self.subscribe(SAMP_RATE_KEY, self.set_samp_rate)
self.subscribe(GAIN_KEY, self.set_gain)
self.subscribe(TX_FREQ_KEY, self.set_freq)
self.subscribe(AMPLITUDE_KEY, self.set_amplitude)
self.subscribe(WAVEFORM_FREQ_KEY, self.set_waveform_freq)
self.subscribe(WAVEFORM2_FREQ_KEY, self.set_waveform2_freq)
self.subscribe(TYPE_KEY, self.set_waveform)
#force update on pubsub keys
for key in (SAMP_RATE_KEY, GAIN_KEY, TX_FREQ_KEY,
AMPLITUDE_KEY, WAVEFORM_FREQ_KEY,
WAVEFORM_OFFSET_KEY, WAVEFORM2_FREQ_KEY):
self[key] = self[key]
self[TYPE_KEY] = options.type #set type last
def _setup_usrpx(self, options):
self._u = uhd.usrp_sink(device_addr=options.args, stream_args=uhd.stream_args('fc32'))
self._u.set_samp_rate(options.samp_rate)
# Set the subdevice spec
if(options.spec):
self._u.set_subdev_spec(options.spec, 0)
# Set the gain on the usrp from options
if(options.gain):
self._u.set_gain(options.gain)
# Set the antenna
if(options.antenna):
self._u.set_antenna(options.antenna, 0)
self.publish(DESC_KEY, lambda: str(self._u))
self.publish(FREQ_RANGE_KEY, self._u.get_freq_range)
self.publish(GAIN_RANGE_KEY, self._u.get_gain_range)
self.publish(GAIN_KEY, self._u.get_gain)
if self._verbose:
print str(self._u)
# Direct asynchronous notifications to callback function
if options.show_async_msg:
self.async_msgq = gr.msg_queue(0)
self.async_src = uhd.amsg_source("", self.async_msgq)
self.async_rcv = gru.msgq_runner(self.async_msgq, self.async_callback)
def async_callback(self, msg):
md = self.async_src.msg_to_async_metadata_t(msg)
print "Channel: %i Time: %f Event: %i" % (md.channel, md.time_spec.get_real_secs(), md.event_code)
def _set_tx_amplitude(self, ampl):
"""
Sets the transmit amplitude sent to the USRP
@param ampl the amplitude or None for automatic
"""
ampl_range = self[AMPL_RANGE_KEY]
if ampl is None:
ampl = (ampl_range[1] - ampl_range[0])*0.15 + ampl_range[0]
self[AMPLITUDE_KEY] = max(ampl_range[0], min(ampl, ampl_range[1]))
def set_samp_rate(self, sr):
self._u.set_samp_rate(sr)
sr = self._u.get_samp_rate()
if self[TYPE_KEY] in (gr.GR_SIN_WAVE, gr.GR_CONST_WAVE):
self._src.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "2tone":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "sweep":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
else:
return True # Waveform not yet set
if self._verbose:
print "Set sample rate to:", sr
return True
def set_gain(self, gain):
if gain is None:
g = self[GAIN_RANGE_KEY]
gain = float(g.start()+g.stop())/2
if self._verbose:
print "Using auto-calculated mid-point TX gain"
self[GAIN_KEY] = gain
return
self._u.set_gain(gain)
if self._verbose:
print "Set TX gain to:", gain
def set_freq(self, target_freq):
if target_freq is None:
f = self[FREQ_RANGE_KEY]
target_freq = float(f.start()+f.stop())/2.0
if self._verbose:
print "Using auto-calculated mid-point frequency"
self[TX_FREQ_KEY] = target_freq
return
tr = self._u.set_center_freq(target_freq)
fs = "%sHz" % (n2s(target_freq),)
if tr is not None:
self._freq = target_freq
self[DSP_FREQ_KEY] = tr.actual_dsp_freq
self[RF_FREQ_KEY] = tr.actual_rf_freq
if self._verbose:
print "Set center frequency to", self._u.get_center_freq()
print "Tx RF frequency: %sHz" % (n2s(tr.actual_rf_freq),)
print "Tx DSP frequency: %sHz" % (n2s(tr.actual_dsp_freq),)
elif self._verbose:
print "Failed to set freq."
return tr
def set_waveform_freq(self, freq):
if self[TYPE_KEY] == gr.GR_SIN_WAVE:
self._src.set_frequency(freq)
elif self[TYPE_KEY] == "2tone":
self._src1.set_frequency(freq)
elif self[TYPE_KEY] == 'sweep':
#there is no set sensitivity, redo fg
self[TYPE_KEY] = self[TYPE_KEY]
return True
def set_waveform2_freq(self, freq):
if freq is None:
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
return
if self[TYPE_KEY] == "2tone":
self._src2.set_frequency(freq)
elif self[TYPE_KEY] == "sweep":
self._src1.set_frequency(freq)
return True
def set_waveform(self, type):
self.lock()
self.disconnect_all()
if type == gr.GR_SIN_WAVE or type == gr.GR_CONST_WAVE:
self._src = gr.sig_source_c(self[SAMP_RATE_KEY], # Sample rate
type, # Waveform type
self[WAVEFORM_FREQ_KEY], # Waveform frequency
self[AMPLITUDE_KEY], # Waveform amplitude
self[WAVEFORM_OFFSET_KEY]) # Waveform offset
elif type == gr.GR_GAUSSIAN or type == gr.GR_UNIFORM:
self._src = gr.noise_source_c(type, self[AMPLITUDE_KEY])
elif type == "2tone":
self._src1 = gr.sig_source_c(self[SAMP_RATE_KEY],
gr.GR_SIN_WAVE,
self[WAVEFORM_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
if(self[WAVEFORM2_FREQ_KEY] is None):
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
self._src2 = gr.sig_source_c(self[SAMP_RATE_KEY],
gr.GR_SIN_WAVE,
self[WAVEFORM2_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
self._src = gr.add_cc()
self.connect(self._src1,(self._src,0))
self.connect(self._src2,(self._src,1))
elif type == "sweep":
# rf freq is center frequency
# waveform_freq is total swept width
# waveform2_freq is sweep rate
# will sweep from (rf_freq-waveform_freq/2) to (rf_freq+waveform_freq/2)
if self[WAVEFORM2_FREQ_KEY] is None:
self[WAVEFORM2_FREQ_KEY] = 0.1
self._src1 = gr.sig_source_f(self[SAMP_RATE_KEY],
gr.GR_TRI_WAVE,
self[WAVEFORM2_FREQ_KEY],
1.0,
-0.5)
self._src2 = gr.frequency_modulator_fc(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
self._src = gr.multiply_const_cc(self[AMPLITUDE_KEY])
self.connect(self._src1,self._src2,self._src)
else:
raise RuntimeError("Unknown waveform type")
self.connect(self._src, self._u)
self.unlock()
if self._verbose:
print "Set baseband modulation to:", waveforms[type]
if type == gr.GR_SIN_WAVE:
print "Modulation frequency: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),)
print "Initial phase:", self[WAVEFORM_OFFSET_KEY]
elif type == "2tone":
print "Tone 1: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),)
print "Tone 2: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),)
elif type == "sweep":
print "Sweeping across %sHz to %sHz" % (n2s(-self[WAVEFORM_FREQ_KEY]/2.0),n2s(self[WAVEFORM_FREQ_KEY]/2.0))
print "Sweep rate: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),)
print "TX amplitude:", self[AMPLITUDE_KEY]
def set_amplitude(self, amplitude):
if amplitude < 0.0 or amplitude > 1.0:
if self._verbose:
print "Amplitude out of range:", amplitude
return False
if self[TYPE_KEY] in (gr.GR_SIN_WAVE, gr.GR_CONST_WAVE, gr.GR_GAUSSIAN, gr.GR_UNIFORM):
self._src.set_amplitude(amplitude)
elif self[TYPE_KEY] == "2tone":
self._src1.set_amplitude(amplitude/2.0)
self._src2.set_amplitude(amplitude/2.0)
elif self[TYPE_KEY] == "sweep":
self._src.set_k(amplitude)
else:
return True # Waveform not yet set
if self._verbose:
print "Set amplitude to:", amplitude
return True
def get_options():
usage="%prog: [options]"
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option("-a", "--args", type="string", default="",
help="UHD device address args , [default=%default]")
parser.add_option("", "--spec", type="string", default=None,
help="Subdevice of UHD device where appropriate")
parser.add_option("-A", "--antenna", type="string", default=None,
help="select Rx Antenna where appropriate")
parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6,
help="set sample rate (bandwidth) [default=%default]")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="set gain in dB (default is midpoint)")
parser.add_option("-f", "--tx-freq", type="eng_float", default=None,
help="Set carrier frequency to FREQ [default=mid-point]",
metavar="FREQ")
parser.add_option("-x", "--waveform-freq", type="eng_float", default=0,
help="Set baseband waveform frequency to FREQ [default=%default]")
parser.add_option("-y", "--waveform2-freq", type="eng_float", default=None,
help="Set 2nd waveform frequency to FREQ [default=%default]")
parser.add_option("--sine", dest="type", action="store_const", const=gr.GR_SIN_WAVE,
help="Generate a carrier modulated by a complex sine wave",
default=gr.GR_SIN_WAVE)
parser.add_option("--const", dest="type", action="store_const", const=gr.GR_CONST_WAVE,
help="Generate a constant carrier")
parser.add_option("--offset", type="eng_float", default=0,
help="Set waveform phase offset to OFFSET [default=%default]")
parser.add_option("--gaussian", dest="type", action="store_const", const=gr.GR_GAUSSIAN,
help="Generate Gaussian random output")
parser.add_option("--uniform", dest="type", action="store_const", const=gr.GR_UNIFORM,
help="Generate Uniform random output")
parser.add_option("--2tone", dest="type", action="store_const", const="2tone",
help="Generate Two Tone signal for IMD testing")
parser.add_option("--sweep", dest="type", action="store_const", const="sweep",
help="Generate a swept sine wave")
parser.add_option("", "--amplitude", type="eng_float", default=0.15,
help="Set output amplitude to AMPL (0.0-1.0) [default=%default]",
metavar="AMPL")
parser.add_option("-v", "--verbose", action="store_true", default=False,
help="Use verbose console output [default=%default]")
parser.add_option("", "--show-async-msg", action="store_true", default=False,
help="Show asynchronous message notifications from UHD [default=%default]")
(options, args) = parser.parse_args()
return (options, args)
# If this script is executed, the following runs. If it is imported,
# the below does not run.
def test_main():
if gr.enable_realtime_scheduling() != gr.RT_OK:
print "Note: failed to enable realtime scheduling, continuing"
# Grab command line options and create top block
try:
(options, args) = get_options()
tb = top_block(options, args)
except RuntimeError, e:
print e
sys.exit(1)
tb.start()
raw_input('Press Enter to quit: ')
tb.stop()
tb.wait()
# Make sure to create the top block (tb) within a function:
# That code in main will allow tb to go out of scope on return,
# which will call the decontructor on usrp and stop transmit.
# Whats odd is that grc works fine with tb in the __main__,
# perhaps its because the try/except clauses around tb.
if __name__ == "__main__":
test_main()
|