1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
/* -*- c++ -*- */
/*
* Copyright 2002 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <cstdio>
#include <string>
#include <iostream>
#include <fstream>
#include <stdexcept>
#include <cmath>
#include <stdlib.h>
#include "base.h"
#include "fsm.h"
fsm::fsm()
{
d_I=0;
d_S=0;
d_O=0;
d_NS.resize(0);
d_OS.resize(0);
d_PS.resize(0);
d_PI.resize(0);
d_TMi.resize(0);
d_TMl.resize(0);
}
fsm::fsm(const fsm &FSM)
{
d_I=FSM.I();
d_S=FSM.S();
d_O=FSM.O();
d_NS=FSM.NS();
d_OS=FSM.OS();
d_PS=FSM.PS(); // is this going to make a deep copy?
d_PI=FSM.PI();
d_TMi=FSM.TMi();
d_TMl=FSM.TMl();
}
fsm::fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS)
{
d_I=I;
d_S=S;
d_O=O;
d_NS=NS;
d_OS=OS;
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Read an FSM specification from a file.
//# Format (hopefully will become more flexible in the future...):
//# I S O (in the first line)
//# blank line
//# Next state matrix (S lines, each with I integers separated by spaces)
//# blank line
//# output symbol matrix (S lines, each with I integers separated by spaces)
//# optional comments
//######################################################################
fsm::fsm(const char *name)
{
FILE *fsmfile;
if((fsmfile=fopen(name,"r"))==NULL)
throw std::runtime_error ("fsm::fsm(const char *name): file open error\n");
//printf("file open error in fsm()\n");
if(fscanf(fsmfile,"%d %d %d\n",&d_I,&d_S,&d_O) == EOF) {
if(ferror(fsmfile) != 0)
throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
}
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
for(int i=0;i<d_S;i++) {
for(int j=0;j<d_I;j++) {
if(fscanf(fsmfile,"%d",&(d_NS[i*d_I+j])) == EOF) {
if(ferror(fsmfile) != 0)
throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
}
}
}
for(int i=0;i<d_S;i++) {
for(int j=0;j<d_I;j++) {
if(fscanf(fsmfile,"%d",&(d_OS[i*d_I+j])) == EOF) {
if(ferror(fsmfile) != 0)
throw std::runtime_error ("fsm::fsm(const char *name): file read error\n");
}
}
}
fclose(fsmfile);
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Automatically generate the FSM from the generator matrix
//# of a (n,k) binary convolutional code
//######################################################################
fsm::fsm(int k, int n, const std::vector<int> &G)
{
// calculate maximum memory requirements for each input stream
std::vector<int> max_mem_x(k,-1);
int max_mem = -1;
for(int i=0;i<k;i++) {
for(int j=0;j<n;j++) {
int mem = -1;
if(G[i*n+j]!=0)
mem=(int)(log(double(G[i*n+j]))/log(2.0));
if(mem>max_mem_x[i])
max_mem_x[i]=mem;
if(mem>max_mem)
max_mem=mem;
}
}
//printf("max_mem_x\n");
//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
// calculate total memory requirements to set S
int sum_max_mem = 0;
for(int i=0;i<k;i++)
sum_max_mem += max_mem_x[i];
//printf("sum_max_mem = %d\n",sum_max_mem);
d_I=1<<k;
d_S=1<<sum_max_mem;
d_O=1<<n;
// binary representation of the G matrix
std::vector<std::vector<int> > Gb(k*n);
for(int j=0;j<k*n;j++) {
Gb[j].resize(max_mem+1);
dec2base(G[j],2,Gb[j]);
//printf("Gb\n");
//for(int m=0;m<Gb[j].size();m++) printf("%d ",Gb[j][m]); printf("\n");
}
// alphabet size of each shift register
std::vector<int> bases_x(k);
for(int j=0;j<k ;j++)
bases_x[j] = 1 << max_mem_x[j];
//printf("bases_x\n");
//for(int j=0;j<max_mem_x.size();j++) printf("%d ",max_mem_x[j]); printf("\n");
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
std::vector<int> sx(k);
std::vector<int> nsx(k);
std::vector<int> tx(k);
std::vector<std::vector<int> > tb(k);
for(int j=0;j<k;j++)
tb[j].resize(max_mem+1);
std::vector<int> inb(k);
std::vector<int> outb(n);
for(int s=0;s<d_S;s++) {
dec2bases(s,bases_x,sx); // split s into k values, each representing one of the k shift registers
//printf("state = %d \nstates = ",s);
//for(int j=0;j<sx.size();j++) printf("%d ",sx[j]); printf("\n");
for(int i=0;i<d_I;i++) {
dec2base(i,2,inb); // input in binary
//printf("input = %d \ninputs = ",i);
//for(int j=0;j<inb.size();j++) printf("%d ",inb[j]); printf("\n");
// evaluate next state
for(int j=0;j<k;j++)
nsx[j] = (inb[j]*bases_x[j]+sx[j])/2; // next state (for each shift register) MSB first
d_NS[s*d_I+i]=bases2dec(nsx,bases_x); // collect all values into the new state
// evaluate transitions
for(int j=0;j<k;j++)
tx[j] = inb[j]*bases_x[j]+sx[j]; // transition (for each shift register)MSB first
for(int j=0;j<k;j++) {
dec2base(tx[j],2,tb[j]); // transition in binary
//printf("transition = %d \ntransitions = ",tx[j]);
//for(int m=0;m<tb[j].size();m++) printf("%d ",tb[j][m]); printf("\n");
}
// evaluate outputs
for(int nn=0;nn<n;nn++) {
outb[nn] = 0;
for(int j=0;j<k;j++) {
for(int m=0;m<max_mem+1;m++)
outb[nn] = (outb[nn] + Gb[j*n+nn][m]*tb[j][m]) % 2; // careful: polynomial 1+D ir represented as 110, not as 011
//printf("output %d equals %d\n",nn,outb[nn]);
}
}
d_OS[s*d_I+i] = base2dec(outb,2);
}
}
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Automatically generate an FSM specification describing the
//# ISI for a channel
//# of length ch_length and a modulation of size mod_size
//######################################################################
fsm::fsm(int mod_size, int ch_length)
{
d_I=mod_size;
d_S=(int) (pow(1.0*d_I,1.0*ch_length-1)+0.5);
d_O=d_S*d_I;
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
for(int s=0;s<d_S;s++) {
for(int i=0;i<d_I;i++) {
int t=i*d_S+s;
d_NS[s*d_I+i] = t/d_I;
d_OS[s*d_I+i] = t;
}
}
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Automatically generate an FSM specification describing the
//# the trellis for a CPM with h=K/P (relatively prime),
//# alphabet size M, and frequency pulse duration L symbols
//#
//# This FSM is based on the paper by B. Rimoldi
//# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988
//# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf
//######################################################################
fsm::fsm(int P, int M, int L)
{
d_I=M;
d_S=(int)(pow(1.0*M,1.0*L-1)+0.5)*P;
d_O=(int)(pow(1.0*M,1.0*L)+0.5)*P;
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
int nv;
for(int s=0;s<d_S;s++) {
for(int i=0;i<d_I;i++) {
int s1=s/P;
int v=s%P;
int ns1= (i*(int)(pow(1.0*M,1.0*(L-1))+0.5)+s1)/M;
if (L==1)
nv=(i+v)%P;
else
nv=(s1%M+v)%P;
d_NS[s*d_I+i] = ns1*P+nv;
d_OS[s*d_I+i] = i*d_S+s;
}
}
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Automatically generate an FSM specification describing the
//# the joint trellis of fsm1 and fsm2
//######################################################################
fsm::fsm(const fsm &FSM1, const fsm &FSM2)
{
d_I=FSM1.I()*FSM2.I();
d_S=FSM1.S()*FSM2.S();
d_O=FSM1.O()*FSM2.O();
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
for(int s=0;s<d_S;s++) {
for(int i=0;i<d_I;i++) {
int s1=s/FSM2.S();
int s2=s%FSM2.S();
int i1=i/FSM2.I();
int i2=i%FSM2.I();
d_NS[s*d_I+i] = FSM1.NS()[s1 * FSM1.I() + i1] * FSM2.S() + FSM2.NS()[s2 * FSM2.I() + i2];
d_OS[s*d_I+i] = FSM1.OS()[s1 * FSM1.I() + i1] * FSM2.O() + FSM2.OS()[s2 * FSM2.I() + i2];
}
}
generate_PS_PI();
generate_TM();
}
//######################################################################
//# Generate a new FSM representing n stages through the original FSM
//# AKA radix-n FSM
//######################################################################
fsm::fsm(const fsm &FSM, int n)
{
d_I=(int) (pow(1.0*FSM.I(),1.0*n)+0.5);
d_S=FSM.S();
d_O=(int) (pow(1.0*FSM.O(),1.0*n)+0.5);
d_NS.resize(d_I*d_S);
d_OS.resize(d_I*d_S);
for(int s=0;s<d_S;s++ ) {
for(int i=0;i<d_I;i++ ) {
std::vector<int> ii(n);
dec2base(i,FSM.I(),ii);
std::vector<int> oo(n);
int ns=s;
for(int k=0;k<n;k++) {
oo[k]=FSM.OS()[ns*FSM.I()+ii[k]];
ns=FSM.NS()[ns*FSM.I()+ii[k]];
}
d_NS[s*d_I+i]=ns;
d_OS[s*d_I+i]=base2dec(oo,FSM.O());
}
}
generate_PS_PI();
generate_TM();
}
//######################################################################
//# generate the PS and PI tables for later use
//######################################################################
void fsm::generate_PS_PI()
{
d_PS.resize(d_S);
d_PI.resize(d_S);
for(int i=0;i<d_S;i++) {
d_PS[i].resize(d_I*d_S); // max possible size
d_PI[i].resize(d_I*d_S);
int j=0;
for(int ii=0;ii<d_S;ii++) for(int jj=0;jj<d_I;jj++) {
if(d_NS[ii*d_I+jj]!=i) continue;
d_PS[i][j]=ii;
d_PI[i][j]=jj;
j++;
}
d_PS[i].resize(j);
d_PI[i].resize(j);
}
}
//######################################################################
//# generate the termination matrices TMl and TMi for later use
//######################################################################
void fsm::generate_TM()
{
d_TMi.resize(d_S*d_S);
d_TMl.resize(d_S*d_S);
for(int i=0;i<d_S*d_S;i++) {
d_TMi[i] = -1; // no meaning
d_TMl[i] = d_S; //infinity: you need at most S-1 steps
if (i/d_S == i%d_S)
d_TMl[i] = 0;
}
for(int s=0;s<d_S;s++) {
bool done = false;
int attempts = 0;
while (done == false && attempts < d_S-1) {
done = find_es(s);
attempts ++;
}
if (done == false && d_S > 1) {
//throw std::runtime_error ("fsm::generate_TM(): FSM appears to be disconnected\n");
printf("fsm::generate_TM(): FSM appears to be disconnected\n");
printf("state %d cannot be reached from all other states\n",s);
}
}
}
// find a path from any state to the ending state "es"
bool fsm::find_es(int es)
{
bool done = true;
for(int s=0;s<d_S;s++) {
if(d_TMl[s*d_S+es] < d_S)
continue;
int minl=d_S;
int mini=-1;
for(int i=0;i<d_I;i++) {
if( 1 + d_TMl[d_NS[s*d_I+i]*d_S+es] < minl) {
minl = 1 + d_TMl[d_NS[s*d_I+i]*d_S+es];
mini = i;
}
}
if (mini != -1) {
d_TMl[s*d_S+es]=minl;
d_TMi[s*d_S+es]=mini;
}
else
done = false;
}
return done;
}
//######################################################################
//# generate trellis representation of FSM as an SVG file
//######################################################################
void fsm::write_trellis_svg( std::string filename ,int number_stages)
{
std::ofstream trellis_fname (filename.c_str());
if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}
const int TRELLIS_Y_OFFSET = 30;
const int TRELLIS_X_OFFSET = 20;
const int STAGE_LABEL_Y_OFFSET = 25;
const int STAGE_LABEL_X_OFFSET = 20;
const int STATE_LABEL_Y_OFFSET = 30;
const int STATE_LABEL_X_OFFSET = 5;
const int STAGE_STATE_OFFSETS = 10;
// std::cout << "################## BEGIN SVG TRELLIS PIC #####################" << std::endl;
trellis_fname << "<svg viewBox = \"0 0 200 200\" version = \"1.1\">" << std::endl;
for( int stage_num = 0;stage_num < number_stages;stage_num ++){
// draw states
for ( int state_num = 0;state_num < d_S ; state_num ++ ) {
trellis_fname << "<circle cx = \"" << stage_num * STAGE_STATE_OFFSETS + TRELLIS_X_OFFSET <<
"\" cy = \"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" r = \"1\"/>" << std::endl;
//draw branches
if(stage_num != number_stages-1){
for( int branch_num = 0;branch_num < d_I; branch_num++){
trellis_fname << "<line x1 =\"" << STAGE_STATE_OFFSETS * stage_num+ TRELLIS_X_OFFSET << "\" ";
trellis_fname << "y1 =\"" << state_num * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET<< "\" ";
trellis_fname << "x2 =\"" << STAGE_STATE_OFFSETS *stage_num + STAGE_STATE_OFFSETS+ TRELLIS_X_OFFSET << "\" ";
trellis_fname << "y2 =\"" << d_NS[d_I * state_num + branch_num] * STAGE_STATE_OFFSETS + TRELLIS_Y_OFFSET << "\" ";
trellis_fname << " stroke-dasharray = \"3," << branch_num << "\" ";
trellis_fname << " stroke = \"black\" stroke-width = \"0.3\"/>" << std::endl;
}
}
}
}
// label the stages
trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;
for( int stage_num = 0;stage_num < number_stages ;stage_num ++){
trellis_fname << "<text x = \"" << stage_num * STAGE_STATE_OFFSETS + STAGE_LABEL_X_OFFSET <<
"\" y = \"" << STAGE_LABEL_Y_OFFSET << "\" >" << std::endl;
trellis_fname << stage_num << std::endl;
trellis_fname << "</text>" << std::endl;
}
trellis_fname << "</g>" << std::endl;
// label the states
trellis_fname << "<g font-size = \"4\" font= \"times\" fill = \"black\">" << std::endl;
for( int state_num = 0;state_num < d_S ; state_num ++){
trellis_fname << "<text y = \"" << state_num * STAGE_STATE_OFFSETS + STATE_LABEL_Y_OFFSET <<
"\" x = \"" << STATE_LABEL_X_OFFSET << "\" >" << std::endl;
trellis_fname << state_num << std::endl;
trellis_fname << "</text>" << std::endl;
}
trellis_fname << "</g>" << std::endl;
trellis_fname << "</svg>" << std::endl;
// std::cout << "################## END SVG TRELLIS PIC ##################### " << std::endl;
trellis_fname.close();
}
//######################################################################
//# Write trellis specification to a text file,
//# in the same format used when reading FSM files
//######################################################################
void fsm::write_fsm_txt(std::string filename)
{
std::ofstream trellis_fname (filename.c_str());
if (!trellis_fname) {std::cout << "file not found " << std::endl ; exit(-1);}
trellis_fname << d_I << ' ' << d_S << ' ' << d_O << std::endl;
trellis_fname << std::endl;
for(int i=0;i<d_S;i++) {
for(int j=0;j<d_I;j++) trellis_fname << d_NS[i*d_I+j] << ' ';
trellis_fname << std::endl;
}
trellis_fname << std::endl;
for(int i=0;i<d_S;i++) {
for(int j=0;j<d_I;j++) trellis_fname << d_OS[i*d_I+j] << ' ';
trellis_fname << std::endl;
}
trellis_fname << std::endl;
trellis_fname.close();
}
|