summaryrefslogtreecommitdiff
path: root/gr-trellis/src/examples/fsm_utils.py
blob: ab7b4e9468f20daeb71a4fc0d50d47411db35dec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
#
# Copyright 2004 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#


import re
import math
import sys
import operator
import numpy
import scipy.linalg

from gnuradio import trellis



######################################################################
# Decimal to any base conversion.
# Convert 'num' to a list of 'l' numbers representing 'num'
# to base 'base' (most significant symbol first).
######################################################################
def dec2base(num,base,l):
    s=range(l)
    n=num
    for i in range(l):
        s[l-i-1]=n%base
        n=int(n/base)
    if n!=0:
        print 'Number ', num, ' requires more than ', l, 'digits.'
    return s


######################################################################
# Conversion from any base to decimal.
# Convert a list 's' of symbols to a decimal number
# (most significant symbol first)
######################################################################
def base2dec(s,base):
    num=0
    for i in range(len(s)):
        num=num*base+s[i]
    return num



######################################################################
# Generate a new FSM representing n stages through the original FSM
######################################################################
def fsm_radix(f,n):
    I=f.I()**n
    S=f.S()
    O=f.O()**n
    nsm=list([0]*I*S)
    osm=list([0]*I*S)
    for s in range(f.S()):
        for i in range(I):
            ii=dec2base(i,f.I(),n) 
            oo=list([0]*n)
            ns=s
            for k in range(n):
                oo[k]=f.OS()[ns*f.I()+ii[k]]
                ns=f.NS()[ns*f.I()+ii[k]]

            nsm[s*I+i]=ns
            osm[s*I+i]=base2dec(oo,f.O())


    f=trellis.fsm(I,S,O,nsm,osm)
    return f




######################################################################
# Automatically generate the lookup table that maps the FSM outputs
# to channel inputs corresponding to a channel 'channel' and a modulation
# 'mod'. Optional normalization of channel to unit energy.
# This table is used by the 'metrics' block to translate
# channel outputs to metrics for use with the Viterbi algorithm. 
# Limitations: currently supports only one-dimensional modulations.
######################################################################
def make_isi_lookup(mod,channel,normalize):
    dim=mod[0]
    constellation = mod[1]

    if normalize:
        p = 0
        for i in range(len(channel)):
            p = p + channel[i]**2
        for i in range(len(channel)):
            channel[i] = channel[i]/math.sqrt(p)

    lookup=range(len(constellation)**len(channel))
    for o in range(len(constellation)**len(channel)):
        ss=dec2base(o,len(constellation),len(channel))
        ll=0
        for i in range(len(channel)):
            ll=ll+constellation[ss[i]]*channel[i]
        lookup[o]=ll
    return (1,lookup)






######################################################################
# Automatically generate the signals appropriate for CPM
# decomposition. 
# This decomposition is based on the paper by B. Rimoldi
# "A decomposition approach to CPM", IEEE Trans. Info Theory, March 1988
# See also my own notes at http://www.eecs.umich.edu/~anastas/docs/cpm.pdf
######################################################################
def make_cpm_signals(K,P,M,L,q,frac):

    Q=numpy.size(q)/L
    h=(1.0*K)/P
    f0=-h*(M-1)/2
    dt=0.0; # maybe start at t=0.5
    t=(dt+numpy.arange(0,Q))/Q
    qq=numpy.zeros(Q)
    for m in range(L):
       qq=qq + q[m*Q:m*Q+Q]
    w=math.pi*h*(M-1)*t-2*math.pi*h*(M-1)*qq+math.pi*h*(L-1)*(M-1)
    
    X=(M**L)*P
    PSI=numpy.empty((X,Q))
    for x in range(X):
       xv=dec2base(x/P,M,L)
       xv=numpy.append(xv, x%P)
       qq1=numpy.zeros(Q)
       for m in range(L):
          qq1=qq1+xv[m]*q[m*Q:m*Q+Q]
       psi=2*math.pi*h*xv[-1]+4*math.pi*h*qq1+w
       #print psi
       PSI[x]=psi
    PSI = numpy.transpose(PSI)
    SS=numpy.exp(1j*PSI) # contains all signals as columns
    #print SS
   

    # Now we need to orthogonalize the signals 
    F = scipy.linalg.orth(SS) # find an orthonormal basis for SS
    #print numpy.dot(numpy.transpose(F.conjugate()),F) # check for orthonormality
    S = numpy.dot(numpy.transpose(F.conjugate()),SS)
    #print F
    #print S

    # We only want to keep those dimensions that contain most
    # of the energy of the overall constellation (eg, frac=0.9 ==> 90%)
    # evaluate mean energy in each dimension
    E=numpy.sum(numpy.absolute(S)**2,axis=1)/Q
    E=E/numpy.sum(E)
    #print E
    Es = -numpy.sort(-E)
    Esi = numpy.argsort(-E)
    #print Es
    #print Esi
    Ecum=numpy.cumsum(Es)
    #print Ecum
    v0=numpy.searchsorted(Ecum,frac)
    N = v0+1
    #print v0
    #print Esi[0:v0+1]
    Ff=numpy.transpose(numpy.transpose(F)[Esi[0:v0+1]])
    #print Ff
    Sf = S[Esi[0:v0+1]]
    #print Sf
    

    return (f0,SS,S,F,Sf,Ff,N)
    #return f0
    



######################################################################
# A list of common modulations.
# Format: (dimensionality,constellation)
######################################################################
pam2 = (1,[-1, 1])
pam4 = (1,[-3, -1, 3, 1])		# includes Gray mapping
pam8 = (1,[-7, -5, -3, -1, 1, 3, 5, 7])

psk4=(2,[1, 0, \
         0, 1, \
         0, -1,\
        -1, 0])				# includes Gray mapping
psk8=(2,[math.cos(2*math.pi*0/8), math.sin(2*math.pi*0/8),  \
         math.cos(2*math.pi*1/8), math.sin(2*math.pi*1/8),  \
         math.cos(2*math.pi*2/8), math.sin(2*math.pi*2/8),  \
         math.cos(2*math.pi*3/8), math.sin(2*math.pi*3/8),  \
         math.cos(2*math.pi*4/8), math.sin(2*math.pi*4/8),  \
         math.cos(2*math.pi*5/8), math.sin(2*math.pi*5/8),  \
         math.cos(2*math.pi*6/8), math.sin(2*math.pi*6/8),  \
         math.cos(2*math.pi*7/8), math.sin(2*math.pi*7/8)])

orth2 = (2,[1, 0, \
            0, 1])
orth4=(4,[1, 0, 0, 0, \
          0, 1, 0, 0, \
          0, 0, 1, 0, \
          0, 0, 0, 1])

######################################################################
# A list of channels to be tested
######################################################################

# C test channel (J. Proakis, Digital Communications, McGraw-Hill Inc., 2001)
c_channel = [0.227, 0.460, 0.688, 0.460, 0.227]










if __name__ == '__main__':
    f1=trellis.fsm('fsm_files/awgn1o2_4.fsm')
    #f2=trellis.fsm('fsm_files/awgn2o3_4.fsm')
    #print f1.I(), f1.S(), f1.O()
    #print f1.NS()
    #print f1.OS()
    #print f2.I(), f2.S(), f2.O()
    #print f2.NS()
    #print f2.OS()
    ##f1.write_trellis_svg('f1.svg',4)
    #f2.write_trellis_svg('f2.svg',4)
    #f=fsm_concatenate(f1,f2)
    #f=fsm_radix(f1,2)

    #print "----------\n"
    #print f.I(), f.S(), f.O()
    #print f.NS()
    #print f.OS()
    #f.write_trellis_svg('f.svg',4)

    q=numpy.arange(0,8)/(2.0*8)
    (f0,SS,S,F,Sf,Ff,N) = make_cpm_signals(1,2,2,1,q,0.99)