1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"docbookx.dtd" [
<!ENTITY test_tcm_listing SYSTEM "test_tcm.py.xml">
]>
<article>
<articleinfo>
<title>Trellis-based algorithms for GNU Radio</title>
<author>
<firstname>Achilleas</firstname>
<surname>Anastasopoulos</surname>
<affiliation>
<address>
<email>anastas@umich.edu</email>
</address>
</affiliation>
</author>
<revhistory>
<revision>
<revnumber>v0.0</revnumber>
<date>2006-08-03</date>
<revremark>
First cut.
</revremark>
</revision>
</revhistory>
<abstract><para>This document provides a description of the
Finite State Machine (FSM) implementation and the related
trellis-based encoding and decoding algorithms
for GNU Radio.
</para></abstract>
</articleinfo>
<!--=====================================================-->
<sect1 id="intro"><title>Introduction</title>
<para>....</para>
<para>
The basic goal of the implementation is to have a generic way of
describing an FSM that is decoupled from whether it describes a
convolutional
code (CC), a trellis code (TC), an inter-symbol interference (ISI)
channel, or any
other communication system that can be modeled with an FSM.
To achieve this goal, we need to separate the pure FSM descrition from the
rest of the model details. For instance, in the case of a rate 2/3 TC,
the FSM should not involve details about the modulation used (it can
be an 8-ary PAM, or 8-PSK, etc). Similarly, when attempting maximum likelihood
sequence detection (MLSD)--using for instance the Viterbi algorithm (VA)--
the VA implementation should not be concerned with the channel details
(such as modulations, channel type, hard or soft inputs, etc).
Clearly, having generality as the primary goal implies some penalty
on the code efficiency, as compared to fully custom implementations.
</para>
<para>
We will now describe the implementation of the basic ingedient, the FSM.
</para>
</sect1>
<!--=====================================================-->
<sect1 id="fsm"><title>The FSM class</title>
<para>An FSM describes the evolution of a system with inputs
x<subscript>k</subscript>, states s<subscript>k</subscript> and outputs y<subscript>k</subscript>. At time k the FSM state is s<subscript>k</subscript>.
Upon reception of a new input symbol x<subscript>k</subscript>, it outputs an output symbol
y<subscript>k</subscript> which is a function of both x<subscript>k</subscript> and s<subscript>k</subscript>.
It will then move to a next state s<subscript>k+1</subscript>.
An FSM has a finite number of states, input and output symbols.
All these are formally described as follows:
</para>
<itemizedlist>
<listitem><para>The input alphabet A<subscript>I</subscript>={0,1,2,...,I-1}, with cardinality I, so that x<subscript>k</subscript> takes values in A<subscript>I</subscript>.</para></listitem>
<listitem><para>The state alphabet A<subscript>S</subscript>={0,1,2,...,S-1}, with cardinality S, so that s<subscript>k</subscript> takes values in A<subscript>S</subscript>.</para></listitem>
<listitem><para>The output alphabet A<subscript>O</subscript>={0,1,2,...,O-1}, with cardinality O, so that y<subscript>k</subscript> takes values in A<subscript>O</subscript></para></listitem>
<listitem><para>The "next-state" function NS: A<subscript>S</subscript> x A<subscript>I</subscript> --> A<subscript>S</subscript>,
with the meaning
s<subscript>k+1</subscript> = NS(s<subscript>k</subscript>, x<subscript>k</subscript>)</para></listitem>
<listitem><para>The "output-symbol" function OS: A<subscript>S</subscript> x A<subscript>I</subscript> --> A<subscript>S</subscript>,
with the meaning
y<subscript>k</subscript> = OS(s<subscript>k</subscript>, x<subscript>k</subscript>)</para></listitem>
</itemizedlist>
<para>
Thus, a complete description of the FSM is given by the
the five-tuple (I,S,O,NS,OS).
Observe that implementation details are hidden
in how the outside world interprets these input and output
integer symbols.
Here is an example of an FSM describing the (2,1) CC
with constraint length 3 and generator polynomial matrix
(1+D+D<superscript>2</superscript> , 1+D<superscript>2</superscript>)
from Proakis-Salehi pg. 779.
</para>
<example id="cc_ex"><title>(2,1) CC with generator polynomials (1+D+D<superscript>2</superscript> , 1+D<superscript>2</superscript>)</title>
<para>
This CC accepts 1 bit at a time, and outputs 2 bits at a time.
It has a shift register storing the last two input bits.
In particular,
b<subscript>k</subscript>(0)=x<subscript>k</subscript>+
x<subscript>k-1</subscript>+x<subscript>k-2</subscript>, and
b<subscript>k</subscript>(1)=x<subscript>k</subscript>+
x<subscript>k-2</subscript>, where addition is mod-2.
We can represent the state of this system
as s<subscript>k</subscript> = (x<subscript>k-1</subscript> x<subscript>k-2</subscript>)<subscript>10</subscript>. In addition we can represent its
output symbol as y<subscript>k</subscript> = (b<subscript>k</subscript>(1) b<subscript>k</subscript>(0))<subscript>10</subscript>.
Based on the above assumptions, the input alphabet A<subscript>I</subscript>={0,1}, so I=2;
the state alphabet A<subscript>S</subscript>={0,1,2,3}, so S=4; and
the output alphabet A<subscript>O</subscript>={0,1,2,3}, so O=4.
The "next-state" function NS(,) is given by
<programlisting>
s<subscript>k</subscript> x<subscript>k</subscript> s<subscript>k+1</subscript>
0 0 0
0 1 2
1 0 0
1 1 2
2 0 1
2 1 3
3 0 1
3 1 3
</programlisting>
The "output-symbol" function OS(,) can be given by
<programlisting>
s<subscript>k</subscript> x<subscript>k</subscript> y<subscript>k</subscript>
0 0 0
0 1 3
1 0 3
1 1 0
2 0 1
2 1 2
3 0 2
3 1 1
</programlisting>
</para>
<para>
Note that although the CC outputs 2 bits per time period, following
our approach, there is only one (quaternary) output symbol per
time period (for instance, here we use the decimal representation
of the 2-bits). Also note that the modulation used is not part of
the FSM description: it can be BPSK, OOK, BFSK, QPSK with or without Gray mapping, etc;
it is up to the rest of the program to interpret the meaning of
the symbol y<subscript>k</subscript>.
</para>
</example>
<para>
The C++ implementation of the FSM class keeps private information about
I,S,O,NS,OS and public methods to read and write them. The NS
and OS matrices are implemented as STL 1-dimensional vectors.
</para>
<programlisting>
class fsm {
private:
int d_I;
int d_S;
int d_O;
std::vector<int> d_NS;
std::vector<int> d_OS;
std::vector<int> d_PS;
std::vector<int> d_PI;
std::vector<int> d_TMi;
std::vector<int> d_TMl;
void generate_PS_PI ();
void generate_TM ();
bool find_es(int es);
public:
fsm();
fsm(const fsm &FSM);
fsm(int I, int S, int O, const std::vector<int> &NS, const std::vector<int> &OS);
fsm(const char *name);
fsm(int k, int n, const std::vector<int> &G);
fsm(int mod_size, int ch_length);
int I () const { return d_I; }
int S () const { return d_S; }
int O () const { return d_O; }
const std::vector<int> & NS () const { return d_NS; }
const std::vector<int> & OS () const { return d_OS; }
const std::vector<int> & PS () const { return d_PS; }
const std::vector<int> & PI () const { return d_PI; }
const std::vector<int> & TMi () const { return d_TMi; }
const std::vector<int> & TMl () const { return d_TMl; }
};
</programlisting>
<para>
As can be seen, other than the trivial and the copy constructor,
there are three additional
ways to construct an FSM.
</para>
<itemizedlist>
<listitem>
<para>Supplying the parameters I,S,O,NS,OS:</para>
<programlisting>
fsm(const int I, const int S, const int O, const std::vector<int> &NS, const std::vector<int> &OS);
</programlisting>
</listitem>
<listitem>
<para>Giving a filename containing all the FSM information:</para>
<programlisting>
fsm(const char *name);
</programlisting>
<para>
This information has to be in the following format:
<programlisting>
I S O
NS(0,0) NS(0,1) ... NS(0,I-1)
NS(1,0) NS(1,1) ... NS(1,I-1)
...
NS(S-1,0) NS(S-1,1) ... NS(S-1,I-1)
OS(0,0) OS(0,1) ... OS(0,I-1)
OS(1,0) OS(1,1) ... OS(1,I-1)
...
OS(S-1,0) OS(S-1,1) ... OS(S-1,I-1)
</programlisting>
</para>
<para>
For instance, the file containing the information for the example mentioned above is of the form:
<programlisting>
2 4 4
0 2
0 2
1 3
1 3
0 3
3 0
1 2
2 1
</programlisting>
</para>
</listitem>
<listitem>
<para>
The third way is specific to FSMs representing binary (n,k) conolutional codes. These FSMs are specified by the number of input bits k, the number of output bits n, and the generator matrix, which is a k x n matrix of integers
G = [g<subscript>i,j</subscript>]<subscript>i=1:k, j=1:n</subscript>, given as an one-dimensional STL vector.
Each integer g<subscript>i,j</subscript> is the decimal representation of the
polynomial g<subscript>i,j</subscript>(D) (e.g., g<subscript>i,j</subscript>= 6 = 110<subscript>2</subscript> is interpreted as g<subscript>i,j</subscript>(D)=1+D) describing the connections from the sequence x<subscript>i</subscript> to
y<subscript>j</subscript> (e.g., in the above example y<subscript>j</subscript>(k) = x<subscript>i</subscript>(k) + x<subscript>i</subscript>(k-1)).
</para>
<programlisting>
fsm(int k, int n, const std::vector<int> &G);
</programlisting>
</listitem>
<listitem>
<para>
The fourth way is specific to FSMs resulting from shift registers, and the output symbol being the entire transition (ie, current_state and current_input). These FSMs are usefull when describibg ISI channels. In particular the state is comprised of the input symbols x(k-1), x(k-2),...,x(k-L), where L = ch_length-1 and each x(i) belongs to an alphabet of size mod_size. The output is taken to be x(k), x(k-1), x(k-2),...,x(k-L) (in decimal format)
</para>
<programlisting>
fsm(const int mod_size, const int ch_length);
</programlisting>
</listitem>
</itemizedlist>
<para>
As can be seen from the above description, there are
two more variables included in the FSM class implementation,
the PS and the PI matrices. These are computed internally
when an FSM is instantiated and their meaning is as follows.
Sometimes (eg, in the traceback operation of the VA) we need
to trace the history of the state or the input sequence.
To do this we would like to know for a given state s<subscript>k</subscript>, what are the possible previous states s<subscript>k-1</subscript>
and what input symbols x<subscript>k-1</subscript> will get us from
s<subscript>k-1</subscript> to s<subscript>k</subscript>. This information can be derived from NS; however we want to have it ready in a
convenient format.
In the following we assume that for any state,
the number of incoming transitions is the same as the number of
outgoing transitions, ie, equal to I. All applications of interest
have FSMs satisfying this requirement.
If we arbitrarily index the incoming transitions to the current state
by "i", then as i goes from 0 to I-1, PS(s<subscript>k</subscript>,i)
gives all previous states s<subscript>k-1</subscript>,
and PI(s<subscript>k</subscript>,i) gives all previous inputs x<subscript>k-1</subscript>.
In other words, for any given s<subscript>k</subscript> and any index i=0,1,...I-1, starting from
s<subscript>k-1</subscript>=PS(s<subscript>k</subscript>,i)
with input
x<subscript>k-1</subscript>=PI(s<subscript>k</subscript>,i)
will get us to the state s<subscript>k</subscript>.
More formally, for any i=0,1,...I-1 we have
s<subscript>k</subscript> = NS(PS(s<subscript>k</subscript>,i),PI(s<subscript>k</subscript>,i)).
</para>
<para>
Finally, there are
two more variables included in the FSM class implementation,
the TMl and the TMi matrices. These are both S x S matrices (represented as STL vectors) computed internally
when an FSM is instantiated and their meaning is as follows.
TMl(i,j) is the minimum number of trellis steps required to go from state i to state j.
Similarly, TMi(i,j) is the initial input required to get you from state i to state j in the minimum number of steps. As an example, if TMl(1,4)=2, it means that you need 2 steps in the trellis to get from state 1 to state 4. Further,
if TMi(1,4)=0 it means that the first such step will be followed if when at state 1 the input is 0. Furthermore, suppose that NS(1,0)=2. Then, TMl(2,4) should be 1 (ie, one more step is needed when starting from state 2 and having state 4 as the final destination). Finally, TMi(2,4) will give us the second input required to complete the path from 1 to 4.
These matrices are useful when we want to implement an encoder with proper state termination. For instance, based on these matrices we can evaluate how many
additional input symbols (and which particular inputs) are required to be appended at the end of an input sequence so that the final state is always 0.
</para>
</sect1>
<!--=====================================================-->
<sect1 id="blocks"><title>Blocks Using the FSM structure</title>
<para>
In this section we give a brief description of the basic blocks implemented that make use of the previously described FSM structure.
</para>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="encoder"><title>Trellis Encoder</title>
<para>
The trellis.encoder_XX(FSM, ST) block instantiates an FSM encoder corresponding to the fsm FSM and having initial state ST. The input and output is a sequence of bytes, shorts or integers.
</para>
</sect2>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="decoder"><title>Viterbi Decoder</title>
<para>
The trellis.viterbi_X(FSM, K, S0, SK) block instantiates a Viterbi decoder
for a sequence of K trellis steps generated by the given FSM and with initial and final states set to S0 and SK, respectively (S0 and/or SK are set to -1
if the corresponding states are not fixed/known at the receiver side).
The output of this block is a sequence of K bytes, shorts or integers representing the estimated input (i.e., uncoded) sequence.
The input is a sequence of K x FSM.O( ) floats, where the k x K + i
float represents the cost associated with the k-th
step in the trellis and the i-th FSM output.
Observe that these inputs are generated externally and thus the Viterbi block is not informed of their meaning (they can be genarated as soft or hard inputs, etc); the only requirement is that they represent additive costs.
</para>
</sect2>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="metrics"><title>Metrics Calculator</title>
<para>
The trellis.metrics_X(O,D,TABLE,TYPE) block is responsible for
transforming the channel output to the stream of metrics appropriate as
inputs to the Viterbi block described above. For each D input bytes/shorts/integers/floats/complexes it produces O output floats
</para>
<para>
The parameter TYPE dictates how these metrics are generated:
<itemizedlist>
<listitem><para>
TRELLIS_EUCLIDEAN: for each D-dimensional vector
r<subscript>k</subscript>=
(r<subscript>k,1</subscript>,r<subscript>k,2</subscript>,...,r<subscript>k,D</subscript>)
evaluates
</para>
<para>
||r<subscript>k</subscript>-c<subscript>i</subscript>||<superscript>2</superscript> = sum<subscript>j=1</subscript><superscript>D</superscript> |r<subscript>k,j</subscript>-c<subscript>i,j</subscript>|<superscript>2</superscript>
</para>
<para>
for each of the O hypothesized ouput
symbols c<subscript>i</subscript> = (c<subscript>i,1</subscript>,c<subscript>i,2</subscript>,...,c<subscript>i,D</subscript>) defined in the vector TABLE,
where TABLE[i * D + j] = c<subscript>i,j</subscript>.
</para></listitem>
<listitem><para>
TRELLIS_HARD_SYMBOL: for each D-dimensional vector
r<subscript>k</subscript>=
(r<subscript>k,1</subscript>,r<subscript>k,2</subscript>,...,r<subscript>k,D</subscript>)
evaluates
</para>
<para>
i<subscript>0</subscript>= argmax<subscript>i</subscript> ||r<subscript>k</subscript>-c<subscript>i</subscript>||<superscript>2</superscript> =
argmax<subscript>i</subscript> sum<subscript>j=1</subscript><superscript>D</superscript> |r<subscript>k,j</subscript>-c<subscript>i,j</subscript>|<superscript>2</superscript>
</para>
<para>
and outputs a sequence of O floats of the form (0,...,0,1,0,...,0), where the
i<subscript>0</subscript> position is set to 1. This corresponds to generating hard inputs (based on the symbol-wise Hamming distance) to the Viterbi algorithm.
</para></listitem>
<listitem><para>
TRELLIS_HARD_BIT (not yet implemented): for each D-dimensional vector
r<subscript>k</subscript>=
(r<subscript>k,1</subscript>,r<subscript>k,2</subscript>,...,r<subscript>k,D</subscript>)
evaluates
</para>
<para>
i<subscript>0</subscript>= argmax<subscript>i</subscript> ||r<subscript>k</subscript>-c<subscript>i</subscript>||<superscript>2</superscript> =
argmax<subscript>i</subscript> sum<subscript>j=1</subscript><superscript>D</superscript> (r<subscript>k,j</subscript>-c<subscript>i,j</subscript>)<superscript>2</superscript>
</para>
<para>
and outputs a sequence of O floats of the form (d<subscript>1</subscript>,d<subscript>2</subscript>,...,d<subscript>O</subscript>), where the
d<subscript>i</subscript> is the bitwise Hamming distance between i and i<subscript>0</subscript>. This corresponds to generating hard inputs (based on the bit-wise Hamming distance) to the Viterbi algorithm.
</para></listitem>
</itemizedlist>
</para>
</sect2>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<sect2 id="viterbi_combined"><title>Combined Metrics Calculator and Viterbi Decoder</title>
<para>
Although the separation of metric calculation and Viterbi algorithm blocks
is consistent with our goal of providing general blocks that can be easily
reused, this separation might result in large input/output buffer sizes
betwen blocks. Indeed for an FSM with a large output alphabet, the
output of the metric block/input of the Viterbi block is FSM.O( ) floats for
each trellis step. Sometimes this results in buffer overflow even for
moderate sequence lengths.
To overcome this problem we provide a block that incorporates the metric calculation and Viterbi algorithm into a single GNU Radio block, namely
trellis.viterbi_combined_X( FSM, K, S0, SK, D, TABLE, TYPE) where the arguments are exactly those used in the aforementioned two blocks.
</para>
</sect2>
</sect1>
<!--=====================================================-->
<sect1 id="tcm"><title>TCM: A Complete Example</title>
<para>
We now discuss through a concrete example how
the above FSM model can be used in GNU Radio.
The communication system that we want to simulate
consists of a source generating the
input information in packets, a CC encoding each packet separately,
a memoryless modulator,
an additive white Gaussian noise (AWGN) channel, and
the VA performing MLSD.
The program source is as follows.
</para>
&test_tcm_listing;
<para>
The program is called by
<literallayout>
./test_tcm.py fsm_fname Es/No_db repetitions
</literallayout>
where "fsm_fname" is the file containing the FSM specification of the
tested TCM code, "Es/No_db" is the SNR in dB, and "repetitions"
are the number of packets to be transmitted and received in order to
collect sufficient number of errors for an accurate estimate of the
error rate.
</para>
<para>
The FSM is first intantiated in "main" by
</para>
<programlisting>
62 f=trellis.fsm(fname) # get the FSM specification from a file
</programlisting>
<para>
Each packet has size Kb bits
(we choose Kb to be a multiple of 16 so that all bits fit nicely into shorts and can be generated by the lfsr GNU Radio).
Assuming that the FSM input has cardinality I, each input symbol consists
of bitspersymbol=log<subscript>2</subscript>( I ). The Kb/16 shorts are now
unpacked to K=Kb/bitspersymbol input
symbols that will drive the FSM encoder.
</para>
<programlisting>
63 Kb=1024*16 # packet size in bits (make it multiple of 16 so it can be packed in a short)
64 bitspersymbol = int(round(math.log(f.I())/math.log(2))) # bits per FSM input symbol
65 K=Kb/bitspersymbol # packet size in trellis steps
</programlisting>
<para>
The FSM will produce K output symbols (remeber the FSM produces always one output symbol for each input symbol). Each of these symbols needs to be modulated. Since we are simulating the communication system, we need not simulate the actual waveforms. An M-ary, D-dimensional
modulation is completely specified by a set of M, D-dimensional real vectors. In "fsm_utils.py" file we give a number of useful modulations with the following format: modulation = (D,constellation), where
constellation=[c11,c12,...,c1D,c21,c22,...,c2D,...,cM1,cM2,...cMD].
The meaning of the above is that every constellation point c_i
is an D-dimnsional vector c_i=(ci1,ci2,...,ciD)
For instance, 4-ary PAM is represented as
(1,[-3, -1, 1, 3]), while QPSK is represented as
(2,[1, 0, 0, 1, 0, -1, -1, 0]). In our example we choose QPSK modulation.
Clearly, M should be equal to the cardinality of the FSM output, O.
Finally the average symbol energy and noise variance are calculated.
</para>
<programlisting>
66 modulation = fsm_utils.psk4 # see fsm_utlis.py for available predefined modulations
67 dimensionality = modulation[0]
68 constellation = modulation[1]
69 if len(constellation)/dimensionality != f.O():
70 sys.stderr.write ('Incompatible FSM output cardinality and modulation size.\n')
71 sys.exit (1)
72 # calculate average symbol energy
73 Es = 0
74 for i in range(len(constellation)):
75 Es = Es + constellation[i]**2
76 Es = Es / (len(constellation)/dimensionality)
77 N0=Es/pow(10.0,esn0_db/10.0); # noise variance
</programlisting>
<para>
Then, "run_test" is called with a different "seed" so that we get
different noise realizations.
</para>
<programlisting>
82 (s,e)=run_test(f,Kb,bitspersymbol,K,dimensionality,constellation,N0,-long(666+i)) # run experiment with different seed to get different noise realizations
</programlisting>
<para>
Let us examine now the "run_test" function.
First we set up the transmitter blocks.
The Kb/16 shorts are first unpacked to
symbols consistent with the FSM input alphabet.
The FSm encoder requires the FSM specification,
and an initial state (which is set to 0 in this example).
</para>
<programlisting>
15 # TX
16 src = gr.lfsr_32k_source_s()
17 src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
18 s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
19 enc = trellis.encoder_ss(f,0) # initial state = 0
</programlisting>
<para>
We now need to modulate the FSM output symbols.
The "chunks_to_symbols_sf" is essentially a memoryless mapper which
for each input symbol y_k
outputs a sequence of D numbers ci1,ci2,...,ciD representing the
coordianates of the constellation symbol c_i with i=y_k.
</para>
<programlisting>
20 mod = gr.chunks_to_symbols_sf(constellation,dimensionality)
</programlisting>
<para>
The channel is AWGN with appropriate noise variance.
For each transmitted symbol c_k=(ck1,ck2,...,ckD) we receive a noisy version
r_k=(rk1,rk2,...,rkD).
</para>
<programlisting>
22 # CHANNEL
23 add = gr.add_ff()
24 noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
</programlisting>
<para>
Part of the design methodology was to decouple the FSM and VA from
the details of the modulation, channel, receiver front-end etc.
In order for the VA to run, we only need to provide it with
a number representing a cost associated with each transition
in the trellis. Then the VA will find the sequence with
the smallest total cost through the trellis.
The cost associated with a transition (s_k,x_k) is only a function
of the output y_k = OS(s_k,x_k), and the observation
vector r_k. Thus, for each time period, k,
we need to label each of the SxI transitions with such a cost.
This means that for each time period we need to evaluate
O such numbers (one for each possible output symbol y_k).
This is done
in "metrics_f". In particular, metrics_f is a memoryless device
taking D inputs at a time and producing O outputs. The D inputs are
rk1,rk2,...,rkD.
The O outputs
are the costs associated with observations rk1,rk2,...,rkD and
hypothesized output symbols c_1,c_2,...,c_M. For instance,
if we choose to perform soft-input VA, we need to evaluate
the Euclidean distance between r_k and each of c_1,c_2,...,c_M,
for each of the K transmitted symbols.
Other options are available as well; for instance, we can
do hard decision demodulation and feed the VA with
symbol Hamming distances, or even bit Hamming distances, etc.
These are all implemented in "metrics_f".
</para>
<programlisting>
26 # RX
27 metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
</programlisting>
<para>
Now the VA can run once it is supplied by the initial and final states.
The initial state is known to be 0; the final state is usually
forced to some value by padding the information sequence appropriately.
In this example, we always send the the same info sequence (we only randomize noise) so we can evaluate off line the final state and then provide it to the VA (a value of -1 signifies that there is no fixed initial
or final state). The VA outputs the estimates of the symbols x_k which
are then packed to shorts and compared with the transmitted sequence.
</para>
<programlisting>
28 va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
29 fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
30 dst = gr.check_lfsr_32k_s();
</programlisting>
<para>
The function returns the number of shorts and the number of shorts in error. Observe that this way the estimated error rate refers to
16-bit-symbol error rate.
</para>
<programlisting>
48 return (ntotal,ntotal-nright)
</programlisting>
</sect1>
<!--====================n================================-->
<sect1 id="future"><title>Future Work</title>
<itemizedlist>
<listitem>
<para>
Improve the documentation :-)
</para>
</listitem>
<listitem>
<para>
automate fsm generation from rational functions
(feedback form).
</para>
</listitem>
<listitem>
<para>
Optimize the VA code if possible.
</para>
</listitem>
<listitem>
<para>
A host of suboptimal
decoders, eg, sphere decoding, M- and T- algorithms, sequential decoding, etc.
can be implemented.
</para>
</listitem>
<listitem>
<para>
Although turbo decoding is rediculously slow in software,
we can design it in principle. One question is, whether we should
use the encoder, and SISO blocks and connect them
through GNU radio or we should implement turbo-decoding
as a single block (issues with buffering between blocks).
So far the former has been implemented.
</para>
</listitem>
</itemizedlist>
</sect1>
</article>
|