1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
|
#!/usr/bin/env python
#
# Copyright 2004,2005,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gru
from gnuradio import usrp
from usrpm import usrp_dbid
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider
from optparse import OptionParser
import wx
import sys
import Numeric
import time
import numpy.fft
import ephem
class app_flow_graph(stdgui2.std_top_block):
def __init__(self, frame, panel, vbox, argv):
stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
self.frame = frame
self.panel = panel
parser = OptionParser(option_class=eng_option)
parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
help="select USRP Rx side A or B (default=A)")
parser.add_option("-d", "--decim", type="int", default=16,
help="set fgpa decimation rate to DECIM [default=%default]")
parser.add_option("-f", "--freq", type="eng_float", default=None,
help="set frequency to FREQ", metavar="FREQ")
parser.add_option("-a", "--avg", type="eng_float", default=1.0,
help="set spectral averaging alpha")
parser.add_option("-i", "--integ", type="eng_float", default=1.0,
help="set integration time")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="set gain in dB (default is midpoint)")
parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
help="Set Total power reference level")
parser.add_option("-y", "--division", type="eng_float", default=0.5,
help="Set Total power Y division size")
parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,help="Set Observer Longitude")
parser.add_option("-c", "--latitude", type="eng_float", default=44.85,help="Set Observer Latitude")
parser.add_option("-o", "--observing", type="eng_float", default=0.0,
help="Set observing frequency")
parser.add_option("-x", "--ylabel", default="dB", help="Y axis label")
parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base")
parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples")
parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")
parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination")
parser.add_option("-X", "--prefix", default="./")
parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate")
parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient")
parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient")
parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display")
parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data")
parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis")
parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz")
parser.add_option("-Q", "--seti_range", type="eng_float", default=1.0e6, help="Total scan width, in Hz for SETI scans")
parser.add_option("-Z", "--dual_mode", action="store_true",
default=False, help="Dual-polarization mode")
parser.add_option("-I", "--interferometer", action="store_true", default=False, help="Interferometer mode")
parser.add_option("-D", "--switch_mode", action="store_true", default=False, help="Dicke Switching mode")
parser.add_option("-P", "--reference_divisor", type="eng_float", default=1.0, help="Reference Divisor")
parser.add_option("-U", "--ref_fifo", default="@@@@")
parser.add_option("-n", "--notches", action="store_true",
default=False, help="Notch frequencies after all other args")
(options, args) = parser.parse_args()
self.setimode = options.setimode
self.dual_mode = options.dual_mode
self.interferometer = options.interferometer
self.normal_mode = False
self.switch_mode = options.switch_mode
self.switch_state = 0
self.reference_divisor = options.reference_divisor
self.ref_fifo = options.ref_fifo
self.NOTCH_TAPS = 128
self.notches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
# Get notch locations
j = 0
for i in args:
self.notches[j] = float(i)
j = j + 1
self.use_notches = options.notches
if (self.ref_fifo != "@@@@"):
self.ref_fifo_file = open (self.ref_fifo, "w")
modecount = 0
for modes in (self.dual_mode, self.interferometer):
if (modes == True):
modecount = modecount + 1
if (modecount > 1):
print "must select only 1 of --dual_mode, or --interferometer"
sys.exit(1)
self.chartneeded = True
if (self.setimode == True):
self.chartneeded = False
if (self.setimode == True and self.interferometer == True):
print "can't pick both --setimode and --interferometer"
sys.exit(1)
if (self.setimode == True and self.switch_mode == True):
print "can't pick both --setimode and --switch_mode"
sys.exit(1)
if (self.interferometer == True and self.switch_mode == True):
print "can't pick both --interferometer and --switch_mode"
sys.exit(1)
if (modecount == 0):
self.normal_mode = True
self.show_debug_info = True
# Pick up waterfall option
self.waterfall = options.waterfall
# SETI mode stuff
self.setimode = options.setimode
self.seticounter = 0
self.setik = options.setik
self.seti_fft_bandwidth = int(options.setibandwidth)
# Calculate binwidth
binwidth = self.seti_fft_bandwidth / options.fft_size
# Use binwidth, and knowledge of likely chirp rates to set reasonable
# values for SETI analysis code. We assume that SETI signals will
# chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec.
#
# upper_limit is the "worst case"--that is, the case for which we have
# to wait the longest to actually see any drift, due to the quantizing
# on FFT bins.
upper_limit = binwidth / 0.10
self.setitimer = int(upper_limit * 2.00)
self.scanning = True
# Calculate the CHIRP values based on Hz/sec
self.CHIRP_LOWER = 0.10 * self.setitimer
self.CHIRP_UPPER = 0.25 * self.setitimer
# Reset hit counters to 0
self.hitcounter = 0
self.s1hitcounter = 0
self.s2hitcounter = 0
self.avgdelta = 0
# We scan through 2Mhz of bandwidth around the chosen center freq
self.seti_freq_range = options.seti_range
# Calculate lower edge
self.setifreq_lower = options.freq - (self.seti_freq_range/2)
self.setifreq_current = options.freq
# Calculate upper edge
self.setifreq_upper = options.freq + (self.seti_freq_range/2)
# Maximum "hits" in a line
self.nhits = 20
# Number of lines for analysis
self.nhitlines = 4
# We change center frequencies based on nhitlines and setitimer
self.setifreq_timer = self.setitimer * (self.nhitlines * 5)
# Create actual timer
self.seti_then = time.time()
# The hits recording array
self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
# Calibration coefficient and offset
self.calib_coeff = options.calib_coeff
self.calib_offset = options.calib_offset
if self.calib_offset < -750:
self.calib_offset = -750
if self.calib_offset > 750:
self.calib_offset = 750
if self.calib_coeff < 1:
self.calib_coeff = 1
if self.calib_coeff > 100:
self.calib_coeff = 100
self.integ = options.integ
self.avg_alpha = options.avg
self.gain = options.gain
self.decln = options.decln
# Set initial values for datalogging timed-output
self.continuum_then = time.time()
self.spectral_then = time.time()
# build the graph
self.subdev = [(0, 0), (0,0)]
#
# If SETI mode, we always run at maximum USRP decimation
#
if (self.setimode):
options.decim = 256
if (self.dual_mode == False and self.interferometer == False):
self.u = usrp.source_c(decim_rate=options.decim,fusb_block_size=8192)
self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
# determine the daughterboard subdevice we're using
self.subdev[0] = usrp.selected_subdev(self.u, options.rx_subdev_spec)
self.subdev[1] = self.subdev[0]
self.cardtype = self.subdev[0].dbid()
else:
self.u=usrp.source_c(decim_rate=options.decim, nchan=2,fusb_block_size=8192)
self.subdev[0] = usrp.selected_subdev(self.u, (0, 0))
self.subdev[1] = usrp.selected_subdev(self.u, (1, 0))
self.cardtype = self.subdev[0].dbid()
self.u.set_mux(0x32103210)
c1 = self.subdev[0].name()
c2 = self.subdev[1].name()
if (c1 != c2):
print "Must have identical cardtypes for --dual_mode or --interferometer"
sys.exit(1)
#
# Set 8-bit mode
#
width = 8
shift = 8
format = self.u.make_format(width, shift)
r = self.u.set_format(format)
# Set initial declination
self.decln = options.decln
input_rate = self.u.adc_freq() / self.u.decim_rate()
self.bw = input_rate
#
# Set prefix for data files
#
self.prefix = options.prefix
#
# The lower this number, the fewer sample frames are dropped
# in computing the FFT. A sampled approach is taken to
# computing the FFT of the incoming data, which reduces
# sensitivity. Increasing sensitivity inreases CPU loading.
#
self.fft_rate = options.fft_rate
self.fft_size = int(options.fft_size)
# This buffer is used to remember the most-recent FFT display
# values. Used later by self.write_spectral_data() to write
# spectral data to datalogging files, and by the SETI analysis
# function.
#
self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64)
#
# If SETI mode, only look at seti_fft_bandwidth
# at a time.
#
if (self.setimode):
self.fft_input_rate = self.seti_fft_bandwidth
#
# Build a decimating bandpass filter
#
self.fft_input_taps = gr.firdes.complex_band_pass (1.0,
input_rate,
-(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200,
gr.firdes.WIN_HAMMING, 0)
#
# Compute required decimation factor
#
decimation = int(input_rate/self.fft_input_rate)
self.fft_bandpass = gr.fir_filter_ccc (decimation,
self.fft_input_taps)
else:
self.fft_input_rate = input_rate
# Set up FFT display
if self.waterfall == False:
self.scope = ra_fftsink.ra_fft_sink_c (panel,
fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
fft_rate=int(self.fft_rate), title="Spectral",
ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
else:
self.scope = ra_waterfallsink.waterfall_sink_c (panel,
fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, size=(1100, 600), xydfunc=self.xydfunc, ref_level=0, span=10)
# Set up ephemeris data
self.locality = ephem.Observer()
self.locality.long = str(options.longitude)
self.locality.lat = str(options.latitude)
# We make notes about Sunset/Sunrise in Continuum log files
self.sun = ephem.Sun()
self.sunstate = "??"
# Set up stripchart display
tit = "Continuum"
if (self.dual_mode != False):
tit = "H+V Continuum"
if (self.interferometer != False):
tit = "East x West Correlation"
self.stripsize = int(options.stripsize)
if self.chartneeded == True:
self.chart = ra_stripchartsink.stripchart_sink_f (panel,
stripsize=self.stripsize,
title=tit,
xlabel="LMST Offset (Seconds)",
scaling=1.0, ylabel=options.ylabel,
divbase=options.divbase)
# Set center frequency
self.centerfreq = options.freq
# Set observing frequency (might be different from actual programmed
# RF frequency)
if options.observing == 0.0:
self.observing = options.freq
else:
self.observing = options.observing
# Remember our input bandwidth
self.bw = input_rate
#
#
# The strip chart is fed at a constant 1Hz rate
#
#
# Call constructors for receive chains
#
if (self.dual_mode == True):
self.setup_dual (self.setimode)
if (self.interferometer == True):
self.setup_interferometer(self.setimode)
if (self.normal_mode == True):
self.setup_normal(self.setimode)
if (self.setimode == True):
self.setup_seti()
self._build_gui(vbox)
# Make GUI agree with command-line
self.integ = options.integ
if self.setimode == False:
self.myform['integration'].set_value(int(options.integ))
self.myform['offset'].set_value(self.calib_offset)
self.myform['dcgain'].set_value(self.calib_coeff)
self.myform['average'].set_value(int(options.avg))
if self.setimode == False:
# Make integrator agree with command line
self.set_integration(int(options.integ))
self.avg_alpha = options.avg
# Make spectral averager agree with command line
if options.avg != 1.0:
self.scope.set_avg_alpha(float(1.0/options.avg))
self.scope.set_average(True)
if self.setimode == False:
# Set division size
self.chart.set_y_per_div(options.division)
# Set reference(MAX) level
self.chart.set_ref_level(options.reflevel)
# set initial values
if options.gain is None:
# if no gain was specified, use the mid-point in dB
g = self.subdev[0].gain_range()
options.gain = float(g[0]+g[1])/2
if options.freq is None:
# if no freq was specified, use the mid-point
r = self.subdev[0].freq_range()
options.freq = float(r[0]+r[1])/2
# Set the initial gain control
self.set_gain(options.gain)
if not(self.set_freq(options.freq)):
self._set_status_msg("Failed to set initial frequency")
# Set declination
self.set_decln (self.decln)
# RF hardware information
self.myform['decim'].set_value(self.u.decim_rate())
self.myform['USB BW'].set_value(self.u.adc_freq() / self.u.decim_rate())
if (self.dual_mode == True):
self.myform['dbname'].set_value(self.subdev[0].name()+'/'+self.subdev[1].name())
else:
self.myform['dbname'].set_value(self.subdev[0].name())
# Set analog baseband filtering, if DBS_RX
if self.cardtype in (usrp_dbid.DBS_RX, usrp_dbid.DBS_RX_REV_2_1):
lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2
if lbw < 1.0e6:
lbw = 1.0e6
self.subdev[0].set_bw(lbw)
self.subdev[1].set_bw(lbw)
# Start the timer for the LMST display and datalogging
self.lmst_timer.Start(1000)
if (self.switch_mode == True):
self.other_timer.Start(330)
def _set_status_msg(self, msg):
self.frame.GetStatusBar().SetStatusText(msg, 0)
def _build_gui(self, vbox):
def _form_set_freq(kv):
# Adjust current SETI frequency, and limits
self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2)
self.setifreq_current = kv['freq']
self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2)
# Reset SETI analysis timer
self.seti_then = time.time()
# Zero-out hits array when changing frequency
self.hits_array[:,:] = 0.0
self.hit_intensities[:,:] = -60.0
return self.set_freq(kv['freq'])
def _form_set_decln(kv):
return self.set_decln(kv['decln'])
# Position the FFT display
vbox.Add(self.scope.win, 15, wx.EXPAND)
if self.setimode == False:
# Position the Total-power stripchart
vbox.Add(self.chart.win, 15, wx.EXPAND)
# add control area at the bottom
self.myform = myform = form.form()
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((7,0), 0, wx.EXPAND)
vbox1 = wx.BoxSizer(wx.VERTICAL)
myform['freq'] = form.float_field(
parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
vbox1.Add((4,0), 0, 0)
myform['lmst_high'] = form.static_text_field(
parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
vbox1.Add((4,0), 0, 0)
if self.setimode == False:
myform['spec_data'] = form.static_text_field(
parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1)
vbox1.Add((4,0), 0, 0)
vbox2 = wx.BoxSizer(wx.VERTICAL)
if self.setimode == False:
vbox3 = wx.BoxSizer(wx.VERTICAL)
g = self.subdev[0].gain_range()
myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
weight=1,
min=int(g[0]), max=int(g[1]),
callback=self.set_gain)
vbox2.Add((4,0), 0, 0)
if self.setimode == True:
max_savg = 100
else:
max_savg = 3000
myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2,
label="Spectral Averaging (FFT frames)", weight=1, min=1, max=max_savg, callback=self.set_averaging)
# Set up scan control button when in SETI mode
if (self.setimode == True):
# SETI scanning control
buttonbox = wx.BoxSizer(wx.HORIZONTAL)
self.scan_control = form.button_with_callback(self.panel,
label="Scan: On ",
callback=self.toggle_scanning)
buttonbox.Add(self.scan_control, 0, wx.CENTER)
vbox2.Add(buttonbox, 0, wx.CENTER)
vbox2.Add((4,0), 0, 0)
if self.setimode == False:
myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2,
label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration)
vbox2.Add((4,0), 0, 0)
myform['decln'] = form.float_field(
parent=self.panel, sizer=vbox2, label="Current Declination", weight=1,
callback=myform.check_input_and_call(_form_set_decln))
vbox2.Add((4,0), 0, 0)
if self.setimode == False:
myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3,
label="Post-Detector Offset", weight=1, min=-750, max=750,
callback=self.set_pd_offset)
vbox3.Add((2,0), 0, 0)
myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3,
label="Post-Detector Gain", weight=1, min=1, max=100,
callback=self.set_pd_gain)
vbox3.Add((2,0), 0, 0)
hbox.Add(vbox1, 0, 0)
hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
if self.setimode == False:
hbox.Add(vbox3, wx.ALIGN_RIGHT, 0)
vbox.Add(hbox, 0, wx.EXPAND)
self._build_subpanel(vbox)
self.lmst_timer = wx.PyTimer(self.lmst_timeout)
self.other_timer = wx.PyTimer(self.other_timeout)
def _build_subpanel(self, vbox_arg):
# build a secondary information panel (sometimes hidden)
# FIXME figure out how to have this be a subpanel that is always
# created, but has its visibility controlled by foo.Show(True/False)
if not(self.show_debug_info):
return
panel = self.panel
vbox = vbox_arg
myform = self.myform
#panel = wx.Panel(self.panel, -1)
#vbox = wx.BoxSizer(wx.VERTICAL)
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((5,0), 0)
myform['decim'] = form.static_float_field(
parent=panel, sizer=hbox, label="Decim")
hbox.Add((5,0), 1)
myform['USB BW'] = form.static_float_field(
parent=panel, sizer=hbox, label="USB BW")
hbox.Add((5,0), 1)
myform['dbname'] = form.static_text_field(
parent=panel, sizer=hbox)
hbox.Add((5,0), 1)
myform['baseband'] = form.static_float_field(
parent=panel, sizer=hbox, label="Analog BB")
hbox.Add((5,0), 1)
myform['ddc'] = form.static_float_field(
parent=panel, sizer=hbox, label="DDC")
hbox.Add((5,0), 0)
vbox.Add(hbox, 0, wx.EXPAND)
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital down converter.
"""
#
# Everything except BASIC_RX should support usrp.tune()
#
if not (self.cardtype == usrp_dbid.BASIC_RX):
r = usrp.tune(self.u, self.subdev[0].which(), self.subdev[0], target_freq)
r = usrp.tune(self.u, self.subdev[1].which(), self.subdev[1], target_freq)
else:
r = self.u.set_rx_freq(0, target_freq)
f = self.u.rx_freq(0)
if abs(f-target_freq) > 2.0e3:
r = 0
if r:
self.myform['freq'].set_value(target_freq) # update displayed value
#
# Make sure calibrator knows our target freq
#
# Remember centerfreq---used for doppler calcs
delta = self.centerfreq - target_freq
self.centerfreq = target_freq
self.observing -= delta
self.scope.set_baseband_freq (self.observing)
self.myform['baseband'].set_value(r.baseband_freq)
self.myform['ddc'].set_value(r.dxc_freq)
if (self.use_notches):
self.compute_notch_taps(self.notches)
if self.dual_mode == False and self.interferometer == False:
self.notch_filt.set_taps(self.notch_taps)
else:
self.notch_filt1.set_taps(self.notch_taps)
self.notch_filt2.set_taps(self.notch_taps)
return True
return False
def set_decln(self, dec):
self.decln = dec
self.myform['decln'].set_value(dec) # update displayed value
def set_gain(self, gain):
self.myform['gain'].set_value(gain) # update displayed value
self.subdev[0].set_gain(gain)
self.subdev[1].set_gain(gain)
self.gain = gain
def set_averaging(self, avval):
self.myform['average'].set_value(avval)
self.scope.set_avg_alpha(1.0/(avval))
self.scope.set_average(True)
self.avg_alpha = avval
def set_integration(self, integval):
if self.setimode == False:
self.integrator.set_taps(1.0/((integval)*(self.bw/2)))
self.myform['integration'].set_value(integval)
self.integ = integval
#
# Timeout function
# Used to update LMST display, as well as current
# continuum value
#
# We also write external data-logging files here
#
def lmst_timeout(self):
self.locality.date = ephem.now()
if self.setimode == False:
x = self.probe.level()
sidtime = self.locality.sidereal_time()
# LMST
s = str(ephem.hours(sidtime)) + " " + self.sunstate
# Continuum detector value
if self.setimode == False:
sx = "%7.4f" % x
s = s + "\nDet: " + str(sx)
else:
sx = "%2d" % self.hitcounter
s1 = "%2d" % self.s1hitcounter
s2 = "%2d" % self.s2hitcounter
sa = "%4.2f" % self.avgdelta
sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER)
s = s + "\nHits: " + str(sx) + "\nS1:" + str(s1) + " S2:" + str(s2)
s = s + "\nAv D: " + str(sa) + "\nCh lim: " + str(sy)
self.myform['lmst_high'].set_value(s)
#
# Write data out to recording files
#
if self.setimode == False:
self.write_continuum_data(x,sidtime)
self.write_spectral_data(self.fft_outbuf,sidtime)
else:
self.seti_analysis(self.fft_outbuf,sidtime)
now = time.time()
if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)):
self.seti_then = now
self.setifreq_current = self.setifreq_current + self.fft_input_rate
if (self.setifreq_current > self.setifreq_upper):
self.setifreq_current = self.setifreq_lower
self.set_freq(self.setifreq_current)
# Make sure we zero-out the hits array when changing
# frequency.
self.hits_array[:,:] = 0.0
self.hit_intensities[:,:] = 0.0
def other_timeout(self):
if (self.switch_state == 0):
self.switch_state = 1
elif (self.switch_state == 1):
self.switch_state = 0
if (self.switch_state == 0):
self.mute.set_n(1)
self.cmute.set_n(int(1.0e9))
elif (self.switch_state == 1):
self.mute.set_n(int(1.0e9))
self.cmute.set_n(1)
if (self.ref_fifo != "@@@@"):
self.ref_fifo_file.write(str(self.switch_state)+"\n")
self.ref_fifo_file.flush()
self.avg_reference_value = self.cprobe.level()
#
# Set reference value
#
self.reference_level.set_k(-1.0 * (self.avg_reference_value/self.reference_divisor))
def fft_outfunc(self,data,l):
self.fft_outbuf=data
def write_continuum_data(self,data,sidtime):
# Create localtime structure for producing filename
foo = time.localtime()
pfx = self.prefix
filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
foo.tm_mon, foo.tm_mday, foo.tm_hour)
# Open the data file, appending
continuum_file = open (filenamestr+".tpdat","a")
flt = "%6.3f" % data
inter = self.decln
integ = self.integ
fc = self.observing
fc = fc / 1000000
bw = self.bw
bw = bw / 1000000
ga = self.gain
now = time.time()
#
# If time to write full header info (saves storage this way)
#
if (now - self.continuum_then > 20):
self.sun.compute(self.locality)
enow = ephem.now()
sunset = self.locality.next_setting(self.sun)
sunrise = self.locality.next_rising(self.sun)
sun_insky = "Down"
self.sunstate = "Dn"
if ((sunrise < enow) and (enow < sunset)):
sun_insky = "Up"
self.sunstate = "Up"
self.continuum_then = now
continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",")
continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw))
continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n")
else:
continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n")
continuum_file.close()
return(data)
def write_spectral_data(self,data,sidtime):
now = time.time()
delta = 10
# If time to write out spectral data
# We don't write this out every time, in order to
# save disk space. Since the spectral data are
# typically heavily averaged, writing this data
# "once in a while" is OK.
#
if (now - self.spectral_then >= delta):
self.spectral_then = now
# Get localtime structure to make filename from
foo = time.localtime()
pfx = self.prefix
filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
foo.tm_mon, foo.tm_mday, foo.tm_hour)
# Open the file
spectral_file = open (filenamestr+".sdat","a")
# Setup data fields to be written
r = data
inter = self.decln
fc = self.observing
fc = fc / 1000000
bw = self.bw
bw = bw / 1000000
av = self.avg_alpha
# Write those fields
spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av))
spectral_file.write (" [ ")
for r in data:
spectral_file.write(" "+str(r))
spectral_file.write(" ]\n")
spectral_file.close()
return(data)
return(data)
def seti_analysis(self,fftbuf,sidtime):
l = len(fftbuf)
x = 0
hits = []
hit_intensities = []
if self.seticounter < self.setitimer:
self.seticounter = self.seticounter + 1
return
else:
self.seticounter = 0
# Run through FFT output buffer, computing standard deviation (Sigma)
avg = 0
# First compute average
for i in range(0,l):
avg = avg + fftbuf[i]
avg = avg / l
sigma = 0.0
# Then compute standard deviation (Sigma)
for i in range(0,l):
d = fftbuf[i] - avg
sigma = sigma + (d*d)
sigma = Numeric.sqrt(sigma/l)
#
# Snarfle through the FFT output buffer again, looking for
# outlying data points
start_f = self.observing - (self.fft_input_rate/2)
current_f = start_f
l = len(fftbuf)
f_incr = self.fft_input_rate / l
hit = -1
# -nyquist to DC
for i in range(l/2,l):
#
# If current FFT buffer has an item that exceeds the specified
# sigma
#
if ((fftbuf[i] - avg) > (self.setik * sigma)):
hits.append(current_f)
hit_intensities.append(fftbuf[i])
current_f = current_f + f_incr
# DC to nyquist
for i in range(0,l/2):
#
# If current FFT buffer has an item that exceeds the specified
# sigma
#
if ((fftbuf[i] - avg) > (self.setik * sigma)):
hits.append(current_f)
hit_intensities.append(fftbuf[i])
current_f = current_f + f_incr
# No hits
if (len(hits) <= 0):
return
#
# OK, so we have some hits in the FFT buffer
# They'll have a rather substantial gauntlet to run before
# being declared a real "hit"
#
# Update stats
self.s1hitcounter = self.s1hitcounter + len(hits)
# Weed out buffers with an excessive number of
# signals above Sigma
if (len(hits) > self.nhits):
return
# Weed out FFT buffers with apparent multiple narrowband signals
# separated significantly in frequency. This means that a
# single signal spanning multiple bins is OK, but a buffer that
# has multiple, apparently-separate, signals isn't OK.
#
last = hits[0]
ns2 = 1
for i in range(1,len(hits)):
if ((hits[i] - last) > (f_incr*3.0)):
return
last = hits[i]
ns2 = ns2 + 1
self.s2hitcounter = self.s2hitcounter + ns2
#
# Run through all available hit buffers, computing difference between
# frequencies found there, if they're all within the chirp limits
# declare a good hit
#
good_hit = False
f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64)
avg_delta = 0
k = 0
for i in range(0,min(len(hits),len(self.hits_array[:,0]))):
f_ds[0] = abs(self.hits_array[i,0] - hits[i])
for j in range(1,len(f_ds)):
f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0])
avg_delta = avg_delta + f_ds[j]
k = k + 1
if (self.seti_isahit (f_ds)):
good_hit = True
self.hitcounter = self.hitcounter + 1
break
if (avg_delta/k < (self.seti_fft_bandwidth/2)):
self.avgdelta = avg_delta / k
# Save 'n shuffle hits
# Old hit buffers percolate through the hit buffers
# (there are self.nhitlines of these buffers)
# and then drop off the end
# A consequence is that while the nhitlines buffers are filling,
# you can get some absurd values for self.avgdelta, because some
# of the buffers are full of zeros
for i in range(self.nhitlines,1):
self.hits_array[:,i] = self.hits_array[:,i-1]
self.hit_intensities[:,i] = self.hit_intensities[:,i-1]
for i in range(0,len(hits)):
self.hits_array[i,0] = hits[i]
self.hit_intensities[i,0] = hit_intensities[i]
# Finally, write the hits/intensities buffer
if (good_hit):
self.write_hits(sidtime)
return
def seti_isahit(self,fdiffs):
truecount = 0
for i in range(0,len(fdiffs)):
if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER):
truecount = truecount + 1
if truecount == len(fdiffs):
return (True)
else:
return (False)
def write_hits(self,sidtime):
# Create localtime structure for producing filename
foo = time.localtime()
pfx = self.prefix
filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
foo.tm_mon, foo.tm_mday, foo.tm_hour)
# Open the data file, appending
hits_file = open (filenamestr+".seti","a")
# Write sidtime first
hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ")
#
# Then write the hits/hit intensities buffers with enough
# "syntax" to allow parsing by external (not yet written!)
# "stuff".
#
for i in range(0,self.nhitlines):
hits_file.write(" ")
for j in range(0,self.nhits):
hits_file.write(str(self.hits_array[j,i])+":")
hits_file.write(str(self.hit_intensities[j,i])+",")
hits_file.write("\n")
hits_file.close()
return
def xydfunc(self,func,xyv):
if self.setimode == True:
return
magn = int(Numeric.log10(self.observing))
if (magn == 6 or magn == 7 or magn == 8):
magn = 6
dfreq = xyv[0] * pow(10.0,magn)
if func == 0:
ratio = self.observing / dfreq
vs = 1.0 - ratio
vs *= 299792.0
if magn >= 9:
xhz = "Ghz"
elif magn >= 6:
xhz = "Mhz"
elif magn <= 5:
xhz = "Khz"
s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1])
s2 = "\n%.3fkm/s" % vs
self.myform['spec_data'].set_value(s+s2)
else:
tmpnotches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
delfreq = -1
if self.use_notches == True:
for i in range(0,len(self.notches)):
if self.notches[i] != 0 and abs(self.notches[i] - dfreq) < ((self.bw/self.NOTCH_TAPS)/2.0):
delfreq = i
break
j = 0
for i in range(0,len(self.notches)):
if (i != delfreq):
tmpnotches[j] = self.notches[i]
j = j + 1
if (delfreq == -1):
for i in range(0,len(tmpnotches)):
if (int(tmpnotches[i]) == 0):
tmpnotches[i] = dfreq
break
self.notches = tmpnotches
self.compute_notch_taps(self.notches)
if self.dual_mode == False and self.interferometer == False:
self.notch_filt.set_taps(self.notch_taps)
else:
self.notch_filt1.set_taps(self.notch_taps)
self.notch_filt2.set_taps(self.notch_taps)
def xydfunc_waterfall(self,pos):
lower = self.observing - (self.seti_fft_bandwidth / 2)
upper = self.observing + (self.seti_fft_bandwidth / 2)
binwidth = self.seti_fft_bandwidth / 1024
s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6)
self.myform['spec_data'].set_value(s)
def toggle_cal(self):
if (self.calstate == True):
self.calstate = False
self.u.write_io(0,0,(1<<15))
self.calibrator.SetLabel("Calibration Source: Off")
else:
self.calstate = True
self.u.write_io(0,(1<<15),(1<<15))
self.calibrator.SetLabel("Calibration Source: On")
def toggle_annotation(self):
if (self.annotate_state == True):
self.annotate_state = False
self.annotation.SetLabel("Annotation: Off")
else:
self.annotate_state = True
self.annotation.SetLabel("Annotation: On")
#
# Turn scanning on/off
# Called-back by "Recording" button
#
def toggle_scanning(self):
# Current scanning? Flip state
if (self.scanning == True):
self.scanning = False
self.scan_control.SetLabel("Scan: Off")
# Not scanning
else:
self.scanning = True
self.scan_control.SetLabel("Scan: On ")
def set_pd_offset(self,offs):
self.myform['offset'].set_value(offs)
self.calib_offset=offs
x = self.calib_coeff / 100.0
self.cal_offs.set_k(offs*(x*8000))
def set_pd_gain(self,gain):
self.myform['dcgain'].set_value(gain)
self.cal_mult.set_k(gain*0.01)
self.calib_coeff = gain
x = gain/100.0
self.cal_offs.set_k(self.calib_offset*(x*8000))
def compute_notch_taps(self,notchlist):
tmptaps = Numeric.zeros(self.NOTCH_TAPS,Numeric.Complex64)
binwidth = self.bw / self.NOTCH_TAPS
for i in range(0,self.NOTCH_TAPS):
tmptaps[i] = complex(1.0,0.0)
for i in notchlist:
diff = i - self.observing
if int(i) == 0:
break
if ((i < (self.observing - self.bw/2)) or (i > (self.observing + self.bw/2))):
continue
if (diff > 0):
idx = diff / binwidth
idx = round(idx)
idx = int(idx)
if (idx < 0 or idx > (self.NOTCH_TAPS/2)):
break
tmptaps[idx] = complex(0.0, 0.0)
if (diff < 0):
idx = -diff / binwidth
idx = round(idx)
idx = (self.NOTCH_TAPS/2) - idx
idx = int(idx+(self.NOTCH_TAPS/2))
if (idx < 0 or idx >= (self.NOTCH_TAPS)):
break
tmptaps[idx] = complex(0.0, 0.0)
self.notch_taps = numpy.fft.ifft(tmptaps)
#
# Setup common pieces of radiometer mode
#
def setup_radiometer_common(self,n):
# The IIR integration filter for post-detection
self.integrator = gr.single_pole_iir_filter_ff(1.0)
self.integrator.set_taps (1.0/self.bw)
if (self.use_notches == True):
self.compute_notch_taps(self.notches)
if (n == 2):
self.notch_filt1 = gr.fft_filter_ccc(1, self.notch_taps)
self.notch_filt2 = gr.fft_filter_ccc(1, self.notch_taps)
else:
self.notch_filt = gr.fft_filter_ccc(1, self.notch_taps)
# Signal probe
self.probe = gr.probe_signal_f()
#
# Continuum calibration stuff
#
x = self.calib_coeff/100.0
self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0)
self.cal_offs = gr.add_const_ff(self.calib_offset*(x*8000))
#
# Mega decimator after IIR filter
#
if (self.switch_mode == False):
self.keepn = gr.keep_one_in_n(gr.sizeof_float, self.bw)
else:
self.keepn = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/2))
#
# For the Dicke-switching scheme
#
#self.switch = gr.multiply_const_ff(1.0)
#
if (self.switch_mode == True):
self.vector = gr.vector_sink_f()
self.swkeep = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/3))
self.mute = gr.keep_one_in_n(gr.sizeof_float, 1)
self.cmute = gr.keep_one_in_n(gr.sizeof_float, int(1.0e9))
self.cintegrator = gr.single_pole_iir_filter_ff(1.0/(self.bw/2))
self.cprobe = gr.probe_signal_f()
else:
self.mute = gr.multiply_const_ff(1.0)
self.avg_reference_value = 0.0
self.reference_level = gr.add_const_ff(0.0)
#
# Setup ordinary single-channel radiometer mode
#
def setup_normal(self, setimode):
self.setup_radiometer_common(1)
self.head = self.u
if (self.use_notches == True):
self.shead = self.notch_filt
else:
self.shead = self.u
if setimode == False:
self.detector = gr.complex_to_mag_squared()
self.connect(self.shead, self.scope)
if (self.use_notches == False):
self.connect(self.head, self.detector, self.mute, self.reference_level,
self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
else:
self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level,
self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
self.connect(self.cal_offs, self.probe)
#
# Add a side-chain detector chain, with a different integrator, for sampling
# The reference channel data
# This is used to derive the offset value for self.reference_level, used above
#
if (self.switch_mode == True):
self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)
return
#
# Setup dual-channel (two antenna, usual orthogonal polarity probes in the same waveguide)
#
def setup_dual(self, setimode):
self.setup_radiometer_common(2)
self.di = gr.deinterleave(gr.sizeof_gr_complex)
self.addchans = gr.add_cc ()
self.detector = gr.add_ff ()
self.h_power = gr.complex_to_mag_squared()
self.v_power = gr.complex_to_mag_squared()
self.connect (self.u, self.di)
if (self.use_notches == True):
self.connect((self.di, 0), self.notch_filt1, (self.addchans, 0))
self.connect((self.di, 1), self.notch_filt2, (self.addchans, 1))
else:
#
# For spectral, adding the two channels works, assuming no gross
# phase or amplitude error
self.connect ((self.di, 0), (self.addchans, 0))
self.connect ((self.di, 1), (self.addchans, 1))
#
# Connect heads of spectral and total-power chains
#
if (self.use_notches == False):
self.head = self.di
else:
self.head = (self.notch_filt1, self.notch_filt2)
self.shead = self.addchans
if (setimode == False):
#
# For dual-polarization mode, we compute the sum of the
# powers on each channel, after they've been detected
#
self.detector = gr.add_ff()
#
# In dual-polarization mode, we compute things a little differently
# In effect, we have two radiometer chains, terminating in an adder
#
if self.use_notches == True:
self.connect(self.notch_filt1, self.h_power)
self.connect(self.notch_filt2, self.v_power)
else:
self.connect((self.head, 0), self.h_power)
self.connect((self.head, 1), self.v_power)
self.connect(self.h_power, (self.detector, 0))
self.connect(self.v_power, (self.detector, 1))
self.connect(self.detector, self.mute, self.reference_level,
self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
self.connect(self.cal_offs, self.probe)
self.connect(self.shead, self.scope)
#
# Add a side-chain detector chain, with a different integrator, for sampling
# The reference channel data
# This is used to derive the offset value for self.reference_level, used above
#
if (self.switch_mode == True):
self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)
return
#
# Setup correlating interferometer mode
#
def setup_interferometer(self, setimode):
self.setup_radiometer_common(2)
self.di = gr.deinterleave(gr.sizeof_gr_complex)
self.connect (self.u, self.di)
self.corr = gr.multiply_cc()
self.c2f = gr.complex_to_float()
self.shead = (self.di, 0)
# Channel 0 to multiply port 0
# Channel 1 to multiply port 1
if (self.use_notches == False):
self.connect((self.di, 0), (self.corr, 0))
self.connect((self.di, 1), (self.corr, 1))
else:
self.connect((self.di, 0), self.notch_filt1, (self.corr, 0))
self.connect((self.di, 1), self.notch_filt2, (self.corr, 0))
#
# Multiplier (correlator) to complex-to-float, followed by integrator, etc
#
self.connect(self.corr, self.c2f, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
#
# FFT scope gets only 1 channel
# FIX THIS, by cross-correlating the *outputs* of two different FFTs, then display
# Funky!
#
self.connect(self.shead, self.scope)
#
# Output of correlator/integrator chain to probe
#
self.connect(self.cal_offs, self.probe)
return
#
# Setup SETI mode
#
def setup_seti(self):
self.connect (self.shead, self.fft_bandpass, self.scope)
return
def main ():
app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision$", nstatus=1)
app.MainLoop()
if __name__ == '__main__':
main ()
|