summaryrefslogtreecommitdiff
path: root/gr-radio-astronomy/src/python/usrp_psr_receiver.py
blob: da2398c46380c7112136775a3f69b02166320b9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
#!/usr/bin/env python
#
# Copyright 2004,2005 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 


#
#
# Pulsar receiver application
#
# Performs both harmonic folding analysis
#  and epoch folding analysis
#
#
from gnuradio import gr, gru, blks, audio
import usrp_dbid
from gnuradio import usrp, optfir
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, form, slider
from optparse import OptionParser
import wx
import sys
import Numeric
import FFT
import ephem
import time
import os
import math


class app_flow_graph(stdgui.gui_flow_graph):
    def __init__(self, frame, panel, vbox, argv):
        stdgui.gui_flow_graph.__init__(self)

        self.frame = frame
        self.panel = panel
        
        parser = OptionParser(option_class=eng_option)
        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
                          help="select USRP Rx side A or B (default=A)")
        parser.add_option("-d", "--decim", type="int", default=16,
                          help="set fgpa decimation rate to DECIM [default=%default]")
        parser.add_option("-f", "--freq", type="eng_float", default=None,
                          help="set frequency to FREQ", metavar="FREQ")
        parser.add_option("-Q", "--observing", type="eng_float", default=0.0,
                          help="set observing frequency to FREQ")
        parser.add_option("-a", "--avg", type="eng_float", default=1.0,
		help="set spectral averaging alpha")
        parser.add_option("-V", "--favg", type="eng_float", default=2.0,
                help="set folder averaging alpha")
        parser.add_option("-g", "--gain", type="eng_float", default=None,
                          help="set gain in dB (default is midpoint)")
        parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
                          help="Set pulse display reference level")
        parser.add_option("-L", "--lowest", type="eng_float", default=1.5,
                          help="Lowest valid frequency bin")
        parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,                          help="Set Observer Longitude")
        parser.add_option("-c", "--latitude", type="eng_float", default=44.85,                          help="Set Observer Latitude")
        parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")

        parser.add_option ("-t", "--threshold", type="eng_float", default=2.5, help="pulsar threshold")
        parser.add_option("-p", "--lowpass", type="eng_float", default=100, help="Pulse spectra cutoff freq")
        parser.add_option("-P", "--prefix", default="./", help="File prefix")
        parser.add_option("-u", "--pulsefreq", type="eng_float", default=0.748, help="Observation pulse rate")
        parser.add_option("-D", "--dm", type="eng_float", default=1.0e-5, help="Dispersion Measure")
        parser.add_option("-O", "--doppler", type="eng_float", default=1.0, help="Doppler ratio")
        parser.add_option("-B", "--divbase", type="eng_float", default=20, help="Y/Div menu base")
        parser.add_option("-I", "--division", type="eng_float", default=100, help="Y/Div")
        (options, args) = parser.parse_args()
        if len(args) != 0:
            parser.print_help()
            sys.exit(1)

        self.show_debug_info = True

        self.reflevel = options.reflevel
        self.divbase = options.divbase
        self.division = options.division

        # Low-pass cutoff for post-detector filter
        # Set to 100Hz usually, since lots of pulsars fit in this
        #   range
        self.lowpass = options.lowpass

        # What is lowest valid frequency bin in post-detector FFT?
        # There's some pollution very close to DC
        self.lowest_freq = options.lowest

        # What (dB) threshold to use in determining spectral candidates
        self.threshold = options.threshold

        # Filename prefix for recording file
        self.prefix = options.prefix

        # Dispersion Measure (DM)
        self.dm = options.dm

        # Doppler shift, as a ratio
        #  1.0 == no doppler shift
        #  1.005 == a little negative shift
        #  0.995 == a little positive shift
        self.doppler = options.doppler

        #
        # Input frequency and observing frequency--not necessarily the
        #   same thing, if we're looking at the IF of some downconverter
        #   that's ahead of the USRP and daughtercard.  This distinction
        #   is important in computing the correct de-dispersion filter.
        #
        self.frequency = options.freq
        if options.observing <= 0:
            self.observing_freq = options.freq
        else:
            self.observing_freq = options.observing
        
        # build the graph
        self.u = usrp.source_c(decim_rate=options.decim)
        self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))

        #
        # Recording file, in case we ever need to record baseband data
        #
        self.recording = gr.file_sink(gr.sizeof_char, "/dev/null")
        self.recording_state = False

        self.pulse_recording = gr.file_sink(gr.sizeof_short, "/dev/null")
        self.pulse_recording_state = False

        #
        # We come up with recording turned off, but the user may
        #  request recording later on
        self.recording.close()
        self.pulse_recording.close()

        #
        # Need these two for converting 12-bit baseband signals to 8-bit
        #
        self.tofloat = gr.complex_to_float()
        self.tochar = gr.float_to_char()

        # Need this for recording pulses (post-detector)
        self.toshort = gr.float_to_short()


        #
        # The spectral measurer sets this when it has a valid
        #   average spectral peak-to-peak distance
        # We can then use this to program the parameters for the epoch folder
        #
        # We set a sentimental value here
        self.pulse_freq = options.pulsefreq

        # Folder runs at this raw sample rate
        self.folder_input_rate = 20000

        # Each pulse in the epoch folder is sampled at 128 times the nominal
        #  pulse rate
        self.folding = 128

 
        #
        # Try to find candidate parameters for rational resampler
        #
        save_i = 0
        candidates = []
        for i in range(20,300):
            input_rate = self.folder_input_rate
            output_rate = int(self.pulse_freq * i)
            interp = gru.lcm(input_rate, output_rate) / input_rate
            decim = gru.lcm(input_rate, output_rate) / output_rate
            if (interp < 500 and decim < 250000):
                 candidates.append(i)

        # We didn't find anything, bail!
        if (len(candidates) < 1):
            print "Couldn't converge on resampler parameters"
            sys.exit(1)

        #
        # Now try to find candidate with the least sampling error
        #
        mindiff = 999.999
        for i in candidates:
            diff = self.pulse_freq * i
            diff = diff - int(diff)
            if (diff < mindiff):
                mindiff = diff
                save_i = i

        # Recompute rates
        input_rate = self.folder_input_rate
        output_rate = int(self.pulse_freq * save_i)

        # Compute new interp and decim, based on best candidate
        interp = gru.lcm(input_rate, output_rate) / input_rate
        decim = gru.lcm(input_rate, output_rate) / output_rate

        # Save optimized folding parameters, used later
        self.folding = save_i
        self.interp = int(interp)
        self.decim = int(decim)

        # So that we can view 4 pulses in the pulse viewer window
        FOLD_MULT=1

        # determine the daughterboard subdevice we're using
        self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
        self.cardtype = self.u.daughterboard_id(0)

        # Compute raw input rate
        input_rate = self.u.adc_freq() / self.u.decim_rate()

        # BW==input_rate for complex data
        self.bw = input_rate

        #
        # Set baseband filter bandwidth if DBS_RX:
        #
        if self.cardtype == usrp_dbid.DBS_RX:
            lbw = input_rate / 2
            if lbw < 1.0e6:
                lbw = 1.0e6
            self.subdev.set_bw(lbw)

        #
        # We use this as a crude volume control for the audio output
        #
        self.volume = gr.multiply_const_ff(10**(-1))
        

        #
        # Create location data for ephem package
        #
        self.locality = ephem.Observer()
        self.locality.long = str(options.longitude)
        self.locality.lat = str(options.latitude)

        #
        # What is the post-detector LPF cutoff for the FFT?
        #
        PULSAR_MAX_FREQ=int(options.lowpass)

        # First low-pass filters down to input_rate/FIRST_FACTOR
        #   and decimates appropriately
        FIRST_FACTOR=int(input_rate/(self.folder_input_rate/2))
        first_filter = gr.firdes.low_pass (1.0,
                                          input_rate,
                                          input_rate/FIRST_FACTOR,
                                          input_rate/(FIRST_FACTOR*20),         
                                          gr.firdes.WIN_HAMMING)

        # Second filter runs at the output rate of the first filter,
        #  And low-pass filters down to PULSAR_MAX_FREQ*10
        #
        second_input_rate =  int(input_rate/(FIRST_FACTOR/2))
        second_filter = gr.firdes.band_pass(1.0, second_input_rate,
                                          0.10,
                                          PULSAR_MAX_FREQ*10,
                                          PULSAR_MAX_FREQ*1.5,
                                          gr.firdes.WIN_HAMMING)

        # Third filter runs at PULSAR_MAX_FREQ*20
        #   and filters down to PULSAR_MAX_FREQ
        #
        third_input_rate = PULSAR_MAX_FREQ*20
        third_filter = gr.firdes_band_pass(1.0, third_input_rate,
                                           0.10, PULSAR_MAX_FREQ,
                                           PULSAR_MAX_FREQ/10.0,
                                           gr.firdes.WIN_HAMMING)


        #
        # Create the appropriate FFT scope
        #
        self.scope = ra_fftsink.ra_fft_sink_f (self, panel, 
           fft_size=int(options.fft_size), sample_rate=PULSAR_MAX_FREQ*2,
           title="Post-detector spectrum",  
           cfunc=self.pulsarfunc, xydfunc=self.xydfunc, fft_rate=200)

        #
        # Tell scope we're looking from DC to PULSAR_MAX_FREQ
        #
        self.scope.set_baseband_freq (0.0)


        #
        # Setup stripchart for showing pulse profiles
        #
        hz = "%5.3fHz " % self.pulse_freq
        per = "(%5.3f sec)" % (1.0/self.pulse_freq)
        sr = "%d sps" % (int(self.pulse_freq*self.folding))
        self.chart = ra_stripchartsink.stripchart_sink_f (self, panel,
               sample_rate=1,
               stripsize=self.folding*FOLD_MULT, parallel=True, title="Pulse Profiles: "+hz+per, 
               xlabel="Seconds @ "+sr, ylabel="Level", autoscale=True,
               divbase=self.divbase, scaling=1.0/(self.folding*self.pulse_freq))
        self.chart.set_ref_level(self.reflevel)
        self.chart.set_y_per_div(self.division)

        # De-dispersion filter setup
        #
        # Do this here, just before creating the filter
        #  that will use the taps.
        #
        ntaps = self.compute_disp_ntaps(self.dm,self.bw,self.observing_freq)

        # Taps for the de-dispersion filter
        self.disp_taps = Numeric.zeros(ntaps,Numeric.Complex64)

        # Compute the de-dispersion filter now
        self.compute_dispfilter(self.dm,self.doppler,
            self.bw,self.observing_freq)

        #
        # Call constructors for receive chains
        #

        #
        # Now create the FFT filter using the computed taps
        self.dispfilt = gr.fft_filter_ccc(1, self.disp_taps)

        #
        # Audio sink
        #
        self.audio = audio.sink(second_input_rate, "plughw:0,0")

        #
        # The three post-detector filters
        # Done this way to allow an audio path (up to 10Khz)
        # ...and also because going from xMhz down to ~100Hz
        # In a single filter doesn't seem to work.
        #
        self.first = gr.fir_filter_fff (FIRST_FACTOR/2, first_filter)

        p = second_input_rate / (PULSAR_MAX_FREQ*20)
        self.second = gr.fir_filter_fff (int(p), second_filter)
        self.third = gr.fir_filter_fff (10, third_filter)

        # Split complex USRP stream into a pair of floats
        self.splitter = gr.complex_to_float (1);

        # I squarer (detector)
        self.multI = gr.multiply_ff();

        # Q squarer (detector)
        self.multQ = gr.multiply_ff();

        # Adding squared I and Q to produce instantaneous signal power
        self.adder = gr.add_ff();

        self.enable_comb_filter = False
        # Epoch folder comb filter
        if self.enable_comb_filter == True:
            bogtaps = Numeric.zeros(512, Numeric.Float64)
            self.folder_comb = gr.fft_filter_ccc(1,bogtaps)

        # Rational resampler
        self.folder_rr = blks.rational_resampler_fff(self, self.interp, self.decim)

        # Epoch folder bandpass
        bogtaps = Numeric.zeros(1, Numeric.Float64)
        self.folder_bandpass = gr.fir_filter_fff (1, bogtaps)

        # Epoch folder F2C/C2F
        self.folder_f2c = gr.float_to_complex()
        self.folder_c2f = gr.complex_to_float()

        # Epoch folder S2P
        self.folder_s2p = gr.serial_to_parallel (gr.sizeof_float, 
             self.folding*FOLD_MULT)

        # Epoch folder IIR Filter (produces average pulse profiles)
        self.folder_iir = gr.single_pole_iir_filter_ff(1.0/options.favg,
             self.folding*FOLD_MULT)

        #
        # Set all the epoch-folder goop up
        #
        self.set_folding_params()

        # 
        # Start connecting configured modules in the receive chain
        #

        # Connect raw USRP to de-dispersion filter, complex->float splitter
        self.connect(self.u, self.dispfilt, self.splitter)

        # Connect splitter outputs to multipliers
        # First do I^2
        self.connect((self.splitter, 0), (self.multI,0))
        self.connect((self.splitter, 0), (self.multI,1))

        # Then do Q^2
        self.connect((self.splitter, 1), (self.multQ,0))
        self.connect((self.splitter, 1), (self.multQ,1))

        # Then sum the squares
        self.connect(self.multI, (self.adder,0))
        self.connect(self.multQ, (self.adder,1))

        # Connect detector/adder output to FIR LPF
        #  in two stages, followed by the FFT scope
        self.connect(self.adder, self.first,
            self.second, self.third, self.scope)

        # Connect audio output
        self.connect(self.first, self.volume)
        self.connect(self.volume, (self.audio, 0))
        self.connect(self.volume, (self.audio, 1))

        # Connect epoch folder
        if self.enable_comb_filter == True:
            self.connect (self.first, self.folder_bandpass, self.folder_rr,
                self.folder_f2c,
                self.folder_comb, self.folder_c2f,
                self.folder_s2p, self.folder_iir,
                self.chart)

        else:
            self.connect (self.first, self.folder_bandpass, self.folder_rr,
                self.folder_s2p, self.folder_iir, self.chart)

        # Connect baseband recording file (initially /dev/null)
        self.connect(self.u, self.tofloat, self.tochar, self.recording)

        # Connect pulse recording file (initially /dev/null)
        self.connect(self.first, self.toshort, self.pulse_recording)

        #
        # Build the GUI elements
        #
        self._build_gui(vbox)

        # Make GUI agree with command-line
        self.myform['average'].set_value(int(options.avg))
        self.myform['foldavg'].set_value(int(options.favg))


        # Make spectral averager agree with command line
        if options.avg != 1.0:
            self.scope.set_avg_alpha(float(1.0/options.avg))
            self.scope.set_average(True)


        # set initial values

        if options.gain is None:
            # if no gain was specified, use the mid-point in dB
            g = self.subdev.gain_range()
            options.gain = float(g[0]+g[1])/2

        if options.freq is None:
            # if no freq was specified, use the mid-point
            r = self.subdev.freq_range()
            options.freq = float(r[0]+r[1])/2

        self.set_gain(options.gain)
        self.set_volume(-10.0)

        if not(self.set_freq(options.freq)):
            self._set_status_msg("Failed to set initial frequency")

        self.myform['decim'].set_value(self.u.decim_rate())
        self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate())
        self.myform['dbname'].set_value(self.subdev.name())
        self.myform['DM'].set_value(self.dm)
        self.myform['Doppler'].set_value(self.doppler)

        #
        # Start the timer that shows current LMST on the GUI
        #
        self.lmst_timer.Start(1000)


    def _set_status_msg(self, msg):
        self.frame.GetStatusBar().SetStatusText(msg, 0)

    def _build_gui(self, vbox):

        def _form_set_freq(kv):
            return self.set_freq(kv['freq'])

        def _form_set_dm(kv):
            return self.set_dm(kv['DM'])

        def _form_set_doppler(kv):
            return self.set_doppler(kv['Doppler'])

        # Position the FFT or Waterfall
        vbox.Add(self.scope.win, 5, wx.EXPAND)
        vbox.Add(self.chart.win, 5, wx.EXPAND)

        # add control area at the bottom
        self.myform = myform = form.form()
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((7,0), 0, wx.EXPAND)
        vbox1 = wx.BoxSizer(wx.VERTICAL)
        myform['freq'] = form.float_field(
            parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
            callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))

        vbox1.Add((3,0), 0, 0)

        # To show current Local Mean Sidereal Time
        myform['lmst_high'] = form.static_text_field(
            parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
        vbox1.Add((3,0), 0, 0)

        # To show current spectral cursor data
        myform['spec_data'] = form.static_text_field(
            parent=self.panel, sizer=vbox1, label="Pulse Freq", weight=1)
        vbox1.Add((3,0), 0, 0)

        # To show best pulses found in FFT output
        myform['best_pulse'] = form.static_text_field(
            parent=self.panel, sizer=vbox1, label="Best freq", weight=1)
        vbox1.Add((3,0), 0, 0)

        vboxBogus = wx.BoxSizer(wx.VERTICAL)
        vboxBogus.Add ((2,0), 0, wx.EXPAND)
        vbox2 = wx.BoxSizer(wx.VERTICAL)
        g = self.subdev.gain_range()
        myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
                                           weight=1,
                                           min=int(g[0]), max=int(g[1]),
                                           callback=self.set_gain)

        vbox2.Add((6,0), 0, 0)
        myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, 
                    label="Spectral Averaging", weight=1, min=1, max=200, callback=self.set_averaging)
        vbox2.Add((6,0), 0, 0)
        myform['foldavg'] = form.slider_field(parent=self.panel, sizer=vbox2,
                    label="Folder Averaging", weight=1, min=1, max=20, callback=self.set_folder_averaging)
        vbox2.Add((6,0), 0, 0)
        myform['volume'] = form.quantized_slider_field(parent=self.panel, sizer=vbox2,
                    label="Audio Volume", weight=1, range=(-20, 0, 0.5), callback=self.set_volume)
        vbox2.Add((6,0), 0, 0)
        myform['DM'] = form.float_field(
            parent=self.panel, sizer=vbox2, label="DM", weight=1,
            callback=myform.check_input_and_call(_form_set_dm))
        vbox2.Add((6,0), 0, 0)
        myform['Doppler'] = form.float_field(
            parent=self.panel, sizer=vbox2, label="Doppler", weight=1,
            callback=myform.check_input_and_call(_form_set_doppler))
        vbox2.Add((6,0), 0, 0)


        # Baseband recording control
        buttonbox = wx.BoxSizer(wx.HORIZONTAL)
        self.record_control = form.button_with_callback(self.panel,
              label="Recording baseband: Off                           ",
              callback=self.toggle_recording)
        self.record_pulse_control = form.button_with_callback(self.panel,
              label="Recording pulses: Off                              ",
              callback=self.toggle_pulse_recording)

        buttonbox.Add(self.record_control, 0, wx.CENTER)
        buttonbox.Add(self.record_pulse_control, 0, wx.CENTER)
        vbox.Add(buttonbox, 0, wx.CENTER)
        hbox.Add(vbox1, 0, 0)
        hbox.Add(vboxBogus, 0, 0)
	hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
        vbox.Add(hbox, 0, wx.EXPAND)

        self._build_subpanel(vbox)

        self.lmst_timer = wx.PyTimer(self.lmst_timeout)
        self.lmst_timeout()


    def _build_subpanel(self, vbox_arg):
        # build a secondary information panel (sometimes hidden)

        # FIXME figure out how to have this be a subpanel that is always
        # created, but has its visibility controlled by foo.Show(True/False)
        
        if not(self.show_debug_info):
            return

        panel = self.panel
        vbox = vbox_arg
        myform = self.myform

        #panel = wx.Panel(self.panel, -1)
        #vbox = wx.BoxSizer(wx.VERTICAL)

        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((5,0), 0)
        myform['decim'] = form.static_float_field(
            parent=panel, sizer=hbox, label="Decim")

        hbox.Add((5,0), 1)
        myform['fs@usb'] = form.static_float_field(
            parent=panel, sizer=hbox, label="Fs@USB")

        hbox.Add((5,0), 1)
        myform['dbname'] = form.static_text_field(
            parent=panel, sizer=hbox)

        hbox.Add((5,0), 1)
        myform['baseband'] = form.static_float_field(
            parent=panel, sizer=hbox, label="Analog BB")

        hbox.Add((5,0), 1)
        myform['ddc'] = form.static_float_field(
            parent=panel, sizer=hbox, label="DDC")

        hbox.Add((5,0), 0)
        vbox.Add(hbox, 0, wx.EXPAND)

        
        
    def set_freq(self, target_freq):
        """
        Set the center frequency we're interested in.

        @param target_freq: frequency in Hz
        @rypte: bool

        Tuning is a two step process.  First we ask the front-end to
        tune as close to the desired frequency as it can.  Then we use
        the result of that operation and our target_frequency to
        determine the value for the digital down converter.
        """
        r = usrp.tune(self.u, 0, self.subdev, target_freq)

        if r:
            self.myform['freq'].set_value(target_freq)     # update displayed value
            self.myform['baseband'].set_value(r.baseband_freq)
            self.myform['ddc'].set_value(r.dxc_freq)
            # Adjust self.frequency, and self.observing_freq
            # We pick up the difference between the current self.frequency
            #   and the just-programmed one, and use this to adjust
            #   self.observing_freq.  We have to do it this way to
            #   make the dedispersion filtering work out properly.
            delta = target_freq - self.frequency
            self.frequency = target_freq
            self.observing_freq += delta

            # Now that we're adjusted, compute a new dispfilter, and
            #   set the taps for the FFT filter.
            ntaps = self.compute_disp_ntaps(self.dm, self.bw, self.observing_freq)
            self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
            self.compute_dispfilter(self.dm,self.doppler,self.bw,
                self.observing_freq)
            self.dispfilt.set_taps(self.disp_taps)

            return True

        return False

    # Callback for gain-setting slider
    def set_gain(self, gain):
        self.myform['gain'].set_value(gain)     # update displayed value
        self.subdev.set_gain(gain)


    def set_volume(self, vol):
        self.myform['volume'].set_value(vol)
        self.volume.set_k((10**(vol/10))/8192)

    # Callback for spectral-averaging slider
    def set_averaging(self, avval):
        self.myform['average'].set_value(avval)
        self.scope.set_avg_alpha(1.0/(avval))
        self.scope.set_average(True)

    def set_folder_averaging(self, avval):
        self.myform['foldavg'].set_value(avval)
        self.folder_iir.set_taps(1.0/avval)

    # Timer callback to update LMST display
    def lmst_timeout(self):
         self.locality.date = ephem.now()
         sidtime = self.locality.sidereal_time()
         self.myform['lmst_high'].set_value(str(ephem.hours(sidtime)))

    #
    # Turn recording on/off
    # Called-back by "Recording" button
    #
    def toggle_recording(self):
        # Pick up current LMST
        self.locality.date = ephem.now()
        sidtime = self.locality.sidereal_time()

        # Pick up localtime, for generating filenames
        foo = time.localtime()

        # Generate filenames for both data and header file
        filename = "%04d%02d%02d%02d%02d.pdat" % (foo.tm_year, foo.tm_mon,
           foo.tm_mday, foo.tm_hour, foo.tm_min)
        hdrfilename = "%04d%02d%02d%02d%02d.phdr" % (foo.tm_year, foo.tm_mon,
           foo.tm_mday, foo.tm_hour, foo.tm_min)

        # Current recording?  Flip state
        if (self.recording_state == True):
          self.recording_state = False
          self.record_control.SetLabel("Recording baseband: Off                           ")
          self.recording.close()
        # Not recording?
        else:
          self.recording_state = True
          self.record_control.SetLabel("Recording baseband to: "+filename)

          # Cause gr_file_sink object to accept new filename
          #   note use of self.prefix--filename prefix from
          #   command line (defaults to ./)
          #
          self.recording.open (self.prefix+filename)

          #
          # We open the header file as a regular file, write header data,
          #   then close
          hdrf = open(self.prefix+hdrfilename, "w")
          hdrf.write("receiver center frequency: "+str(self.frequency)+"\n")
          hdrf.write("observing frequency: "+str(self.observing_freq)+"\n")
          hdrf.write("DM: "+str(self.dm)+"\n")
          hdrf.write("doppler: "+str(self.doppler)+"\n")

          hdrf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
          hdrf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
          hdrf.write("sample type: complex_char\n")
          hdrf.write("sample size: "+str(gr.sizeof_char*2)+"\n")
          hdrf.close()
    #
    # Turn recording on/off
    # Called-back by "Recording" button
    #
    def toggle_pulse_recording(self):
        # Pick up current LMST
        self.locality.date = ephem.now()
        sidtime = self.locality.sidereal_time()

        # Pick up localtime, for generating filenames
        foo = time.localtime()

        # Generate filenames for both data and header file
        filename = "%04d%02d%02d%02d%02d.padat" % (foo.tm_year, foo.tm_mon,
           foo.tm_mday, foo.tm_hour, foo.tm_min)
        hdrfilename = "%04d%02d%02d%02d%02d.pahdr" % (foo.tm_year, foo.tm_mon,
           foo.tm_mday, foo.tm_hour, foo.tm_min)

        # Current recording?  Flip state
        if (self.pulse_recording_state == True):
          self.pulse_recording_state = False
          self.record_pulse_control.SetLabel("Recording pulses: Off                           ")
          self.pulse_recording.close()
        # Not recording?
        else:
          self.pulse_recording_state = True
          self.record_pulse_control.SetLabel("Recording pulses to: "+filename)

          # Cause gr_file_sink object to accept new filename
          #   note use of self.prefix--filename prefix from
          #   command line (defaults to ./)
          #
          self.pulse_recording.open (self.prefix+filename)

          #
          # We open the header file as a regular file, write header data,
          #   then close
          hdrf = open(self.prefix+hdrfilename, "w")
          hdrf.write("receiver center frequency: "+str(self.frequency)+"\n")
          hdrf.write("observing frequency: "+str(self.observing_freq)+"\n")
          hdrf.write("DM: "+str(self.dm)+"\n")
          hdrf.write("doppler: "+str(self.doppler)+"\n")
          hdrf.write("pulse rate: "+str(self.pulse_freq)+"\n")
          hdrf.write("pulse sps: "+str(self.pulse_freq*self.folding)+"\n")
          hdrf.write("file sps: "+str(self.folder_input_rate)+"\n")

          hdrf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
          hdrf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
          hdrf.write("sample type: short\n")
          hdrf.write("sample size: 1\n")
          hdrf.close()

    # We get called at startup, and whenever the GUI "Set Folding params"
    #   button is pressed
    #
    def set_folding_params(self):
        if (self.pulse_freq <= 0):
            return

        # Compute required sample rate
        self.sample_rate = int(self.pulse_freq*self.folding)

        # And the implied decimation rate
        required_decimation = int(self.folder_input_rate / self.sample_rate)

        # We also compute a new FFT comb filter, based on the expected
        #  spectral profile of our pulse parameters
        #
        # FFT-based comb filter
        #
        N_COMB_TAPS=int(self.sample_rate*4)
        if N_COMB_TAPS > 2000:
            N_COMB_TAPS = 2000
        self.folder_comb_taps = Numeric.zeros(N_COMB_TAPS,Numeric.Complex64)
        fincr = (self.sample_rate)/float(N_COMB_TAPS)
        for i in range(0,len(self.folder_comb_taps)):
            self.folder_comb_taps[i] = complex(0.0, 0.0)

        freq = 0.0
        harmonics = [1.0,2.0,3.0,4.0,5.0,6.0,7.0]
        for i in range(0,len(self.folder_comb_taps)/2):
            for j in range(0,len(harmonics)):
                 if abs(freq - harmonics[j]*self.pulse_freq) <= fincr:
                     self.folder_comb_taps[i] = complex(4.0, 0.0)
                     if harmonics[j] == 1.0:
                         self.folder_comb_taps[i] = complex(8.0, 0.0)
            freq += fincr

        if self.enable_comb_filter == True:
            # Set the just-computed FFT comb filter taps
            self.folder_comb.set_taps(self.folder_comb_taps)

        # And compute a new decimated bandpass filter, to go in front
        #   of the comb.  Primary function is to decimate and filter down
        #   to an exact-ish multiple of the target pulse rate
        #
        self.folding_taps = gr.firdes_band_pass (1.0, self.folder_input_rate,
            0.10, self.sample_rate/2, 10, 
            gr.firdes.WIN_HAMMING)

        # Set the computed taps for the bandpass/decimate filter
        self.folder_bandpass.set_taps (self.folding_taps)
    #
    # Record a spectral "hit" of a possible pulsar spectral profile
    #
    def record_hit(self,hits, hcavg, hcmax):
        # Pick up current LMST
        self.locality.date = ephem.now()
        sidtime = self.locality.sidereal_time()

        # Pick up localtime, for generating filenames
        foo = time.localtime()

        # Generate filenames for both data and header file
        hitfilename = "%04d%02d%02d%02d.phit" % (foo.tm_year, foo.tm_mon,
           foo.tm_mday, foo.tm_hour)

        hitf = open(self.prefix+hitfilename, "a")
        hitf.write("receiver center frequency: "+str(self.frequency)+"\n")
        hitf.write("observing frequency: "+str(self.observing_freq)+"\n")
        hitf.write("DM: "+str(self.dm)+"\n")
        hitf.write("doppler: "+str(self.doppler)+"\n")

        hitf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
        hitf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
        hitf.write("spectral peaks: "+str(hits)+"\n")
        hitf.write("HCM: "+str(hcavg)+" "+str(hcmax)+"\n")
        hitf.close()

    # This is a callback used by ra_fftsink.py (passed on creation of
    #   ra_fftsink)
    # Whenever the user moves the cursor within the FFT display, this
    #   shows the coordinate data
    #
    def xydfunc(self,xyv):
        s = "%.6fHz\n%.3fdB" % (xyv[0], xyv[1])
        if self.lowpass >= 500:
            s = "%.6fHz\n%.3fdB" % (xyv[0]*1000, xyv[1])
        
        self.myform['spec_data'].set_value(s)

    # This is another callback used by ra_fftsink.py (passed on creation
    #   of ra_fftsink).  We pass this as our "calibrator" function, but
    #   we create interesting side-effects in the GUI.
    #
    # This function finds peaks in the FFT output data, and reports
    #  on them through the "Best" text object in the GUI
    #  It also computes the Harmonic Compliance Measure (HCM), and displays
    #  that also.
    #
    def pulsarfunc(self,d,l):
       x = range(0,l)
       incr = float(self.lowpass)/float(l)
       incr = incr * 2.0
       bestdb = -50.0
       bestfreq = 0.0
       avg = 0
       dcnt = 0
       #
       # First, we need to find the average signal level
       #
       for i in x:
           if (i * incr) > self.lowest_freq and (i*incr) < (self.lowpass-2):
               avg += d[i]
               dcnt += 1
       # Set average signal level
       avg /= dcnt
       s2=" "
       findcnt = 0
       #
       # Then we find candidates that are greater than the user-supplied
       #   threshold.
       #
       # We try to cluster "hits" whose whole-number frequency is the
       #   same, and compute an average "hit" frequency.
       #
       lastint = 0
       hits=[]
       intcnt = 0
       freqavg = 0
       for i in x:
           freq = i*incr
           # If frequency within bounds, and the (dB-avg) value is above our
           #   threshold
           if freq > self.lowest_freq and freq < self.lowpass-2 and (d[i] - avg) > self.threshold:
               # If we're finding a new whole-number frequency
               if lastint != int(freq):
                   # Record "center" of this hit, if this is a new hit
                   if lastint != 0:
                       s2 += "%5.3fHz " % (freqavg/intcnt)
                       hits.append(freqavg/intcnt)
                       findcnt += 1
                   lastint = int(freq)
                   intcnt = 1
                   freqavg = freq
               else:
                   intcnt += 1
                   freqavg += freq
           if (findcnt >= 14):
               break

       if intcnt > 1:
           s2 += "%5.3fHz " % (freqavg/intcnt)
           hits.append(freqavg/intcnt)

       #
       # Compute the HCM, by dividing each of the "hits" by each of the
       #   other hits, and comparing the difference between a "perfect"
       #   harmonic, and the observed frequency ratio.
       #
       measure = 0
       max_measure=0
       mcnt = 0
       avg_dist = 0
       acnt = 0
       for i in range(1,len(hits)):
           meas = hits[i]/hits[0] - int(hits[i]/hits[0])
           if abs((hits[i]-hits[i-1])-hits[0]) < 0.1:
               avg_dist += hits[i]-hits[i-1]
               acnt += 1
           if meas > 0.98 and meas < 1.0:
               meas = 1.0 - meas
           meas *= hits[0]
           if meas >= max_measure:
               max_measure = meas
           measure += meas
           mcnt += 1
       if mcnt > 0:
           measure /= mcnt
           if acnt > 0:
               avg_dist /= acnt
       if len(hits) > 1:
           measure /= mcnt
           s3="\nHCM: Avg %5.3fHz(%d) Max %5.3fHz Dist %5.3fHz(%d)" % (measure,mcnt,max_measure, avg_dist, acnt)
           if max_measure < 0.5 and len(hits) >= 2:
               self.record_hit(hits, measure, max_measure)
               self.avg_dist = avg_dist
       else:
           s3="\nHCM: --"
       s4="\nAvg dB: %4.2f" % avg
       self.myform['best_pulse'].set_value("("+s2+")"+s3+s4)

       # Since we are nominally a calibrator function for ra_fftsink, we
       #  simply return what they sent us, untouched.  A "real" calibrator
       #  function could monkey with the data before returning it to the
       #  FFT display function.
       return(d)

    #
    # Callback for the "DM" gui object
    #
    # We call compute_dispfilter() as appropriate to compute a new filter,
    #   and then set that new filter into self.dispfilt.
    #
    def set_dm(self,dm):
       self.dm = dm

       ntaps = self.compute_disp_ntaps (self.dm, self.bw, self.observing_freq)
       self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
       self.compute_dispfilter(self.dm,self.doppler,self.bw,self.observing_freq)
       self.dispfilt.set_taps(self.disp_taps)
       self.myform['DM'].set_value(dm)
       return(dm)

    #
    # Callback for the "Doppler" gui object
    #
    # We call compute_dispfilter() as appropriate to compute a new filter,
    #   and then set that new filter into self.dispfilt.
    #
    def set_doppler(self,doppler):
       self.doppler = doppler

       ntaps = self.compute_disp_ntaps (self.dm, self.bw, self.observing_freq)
       self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
       self.compute_dispfilter(self.dm,self.doppler,self.bw,self.observing_freq)
       self.dispfilt.set_taps(self.disp_taps)
       self.myform['Doppler'].set_value(doppler)
       return(doppler)

    #
    # Compute a de-dispersion filter
    #  From Hankins, et al, 1975
    #
    # This code translated from dedisp_filter.c from Swinburne
    #   pulsar software repository
    #
    def compute_dispfilter(self,dm,doppler,bw,centerfreq):
        npts = len(self.disp_taps)
        tmp = Numeric.zeros(npts, Numeric.Complex64)
        M_PI = 3.14159265358
        DM = dm/2.41e-10

        #
        # Because astronomers are a crazy bunch, the "standard" calcultion
        #   is in Mhz, rather than Hz
        #
        centerfreq = centerfreq / 1.0e6
        bw = bw / 1.0e6
        
        isign = int(bw / abs (bw))
        
        # Center frequency may be doppler shifted
        cfreq     = centerfreq / doppler

        # As well as the bandwidth..
        bandwidth = bw / doppler

        # Bandwidth divided among bins
        binwidth  = bandwidth / npts

        # Delay is an "extra" parameter, in usecs, and largely
        #  untested in the Swinburne code.
        delay = 0.0
        
        # This determines the coefficient of the frequency response curve
        # Linear in DM, but quadratic in center frequency
        coeff = isign * 2.0*M_PI * DM / (cfreq*cfreq)
        
        # DC to nyquist/2
        n = 0
        for i in range(0,int(npts/2)):
            freq = (n + 0.5) * binwidth
            phi = coeff*freq*freq/(cfreq+freq) + (2.0*M_PI*freq*delay)
            tmp[i] = complex(math.cos(phi), math.sin(phi))
            n += 1

        # -nyquist/2 to DC
        n = int(npts/2)
        n *= -1
        for i in range(int(npts/2),npts):
            freq = (n + 0.5) * binwidth
            phi = coeff*freq*freq/(cfreq+freq) + (2.0*M_PI*freq*delay)
            tmp[i] = complex(math.cos(phi), math.sin(phi))
            n += 1
        
        self.disp_taps = FFT.inverse_fft(tmp)
        return(self.disp_taps)

    #
    # Compute minimum number of taps required in de-dispersion FFT filter
    #
    def compute_disp_ntaps(self,dm,bw,freq):
        #
        # Dt calculations are in Mhz, rather than Hz
        #    crazy astronomers....
        mbw = bw/1.0e6
        mfreq = freq/1.0e6

        f_lower = mfreq-(mbw/2)
        f_upper = mfreq+(mbw/2)

        # Compute smear time
        Dt = dm/2.41e-4 * (1.0/(f_lower*f_lower)-1.0/(f_upper*f_upper))

        # ntaps is now bandwidth*smeartime
        # Should be bandwidth*smeartime*2, but the Gnu Radio FFT filter
        #   already expands it by a factor of 2
        ntaps = bw*Dt
        if ntaps < 64:
            ntaps = 64
        return(int(ntaps))

def main ():
    app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY PULSAR RECEIVER: $Revision$", nstatus=1)
    app.MainLoop()

if __name__ == '__main__':
    main ()