1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
#!/usr/bin/env python
#
# Copyright 2003,2004,2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import Numeric
import math
import ephem
import time
#
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NO LONGER USED
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#
#
#
# Simple class for allowing local definition of a calibration function
# for raw samples coming from the RA detector chain. Each observatory
# is different, and rather than hacking up the main code in usrp_ra_receiver
# we define the appropriate function here.
#
# For example, one could calibrate the output in Janskys, rather than
# dB.
#
#
def calib_default_total_power(data):
r = 10.0*math.log10(data)
return(r)
def calib_numogate_ridge_observatory_total_power(data):
me = ephem.Observer()
#
# PyEphem wants lat/long as strings, rather than floats--took me quite
# a long time to figure that out. If they don't arrive as strings,
# the calculations for sidereal time are complete garbage
#
me.long = globals()["calib_long"]
me.lat = globals()["calib_lat"]
me.date = ephem.now()
sidtime = me.sidereal_time()
foo = time.localtime()
if not "calib_prefix" in globals():
pfx = "./"
else:
pfx = globals()["calib_prefix"]
filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
foo.tm_mon, foo.tm_mday, foo.tm_hour)
numogate_file = open (filenamestr+".tpdat","a")
r = (data / 409.6)
flt = "%6.3f" % r
#r = calib_default_total_power(data)
inter = globals()["calib_decln"]
integ = globals()["calib_integ_setting"]
fc = globals()["calib_freq_setting"]
fc = fc / 1000000
bw = globals()["calib_bw_setting"]
bw = bw / 1000000
ga = globals()["calib_gain_setting"]
now = time.time()
if not "calib_then_tpdat" in globals():
globals()["calib_then_tpdat"] = now
if (now - globals()["calib_then_tpdat"]) >= 20:
globals()["calib_then_tpdat"] = now
numogate_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",")
numogate_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw))
numogate_file.write(",Ga="+str(ga)+"\n")
else:
numogate_file.write(str(ephem.hours(sidtime))+" "+flt+"\n")
numogate_file.close()
return(r)
def calib_numogate_ridge_observatory_fft(data,l):
me = ephem.Observer()
#
# PyEphem wants lat/long as strings, rather than floats--took me quite
# a long time to figure that out. If they don't arrive as strings,
# the calculations for sidereal time are complete garbage
#
me.long = globals()["calib_long"]
me.lat = globals()["calib_lat"]
me.date = ephem.now()
sidtime = me.sidereal_time()
foo = time.localtime()
if not "calib_prefix" in globals():
pfx = "./"
else:
pfx = globals()["calib_prefix"]
filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
foo.tm_mon, foo.tm_mday, foo.tm_hour)
now = time.time()
if not "calib_then" in globals():
globals()["calib_then"] = now
delta = (l/1024)*5
if (now - globals()["calib_then"]) >= delta:
globals()["calib_then"] = now
numogate_file = open (filenamestr+".sdat","a")
r = data
inter = globals()["calib_decln"]
fc = globals()["calib_freq_setting"]
fc = fc / 1000000
bw = globals()["calib_bw_setting"]
bw = bw / 1000000
av = globals()["calib_avg_alpha"]
numogate_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av))
numogate_file.write(" "+str(r)+"\n")
numogate_file.close()
return(r)
return(data)
def calib_default_fft(db,l):
return(db)
#
# We capture various parameters from the receive chain here, because
# they can affect the calibration equations.
#
#
def calib_set_gain(gain):
globals()["calib_gain_setting"] = gain
globals()["calib_then_tpdat"] = time.time() - 50
def calib_set_integ(integ):
globals()["calib_integ_setting"] = integ
globals()["calib_then_tpdat"] = time.time() - 50
def calib_set_bw(bw):
globals()["calib_bw_setting"] = bw
globals()["calib_then_tpdat"] = time.time() - 50
def calib_set_freq(freq):
globals()["calib_freq_setting"] = freq
globals()["calib_then_tpdat"] = time.time() - 50
def calib_set_avg_alpha(alpha):
globals()["calib_avg_alpha"] = alpha
def calib_set_interesting(inter):
globals()["calib_is_interesting"] = inter
def calib_set_decln(dec):
globals()["calib_decln"] = dec
globals()["calib_then_tpdat"] = time.time() - 50
def calib_set_prefix(pfx):
globals()["calib_prefix"] = pfx
def calib_set_long(long):
globals()["calib_long"] = long
def calib_set_lat(lat):
globals()["calib_lat"] = lat
|