summaryrefslogtreecommitdiff
path: root/gr-radio-astronomy/src/python/local_calibrator.py
blob: f787cef16acb920936bc6dd293573c79bf493fc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
#
# Copyright 2003,2004,2005 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

import Numeric
import math
import ephem
import time

#
# Simple class for allowing local definition of a calibration function
#  for raw samples coming from the RA detector chain.  Each observatory
#  is different, and rather than hacking up the main code in usrp_ra_receiver
#  we define the appropriate function here.
#
# For example, one could calibrate the output in Janskys, rather than
#  dB.
#
#

def calib_default_total_power(data):
    r = 10.0*math.log10(data)
    return(r)

def calib_numogate_ridge_observatory_total_power(data):

    me = ephem.Observer()

    #
    # PyEphem wants lat/long as strings, rather than floats--took me quite
    #  a long time to figure that out.  If they don't arrive as strings,
    #  the calculations for sidereal time are complete garbage
    #
    me.long = str(-76.043)
    me.lat = str(44.967)

    me.date = ephem.now()
    sidtime = me.sidereal_time()

    foo = time.localtime()
    if not "calib_prefix" in globals():
        pfx = "./"
    else:
        pfx = globals()["calib_prefix"]
    filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
       foo.tm_mon, foo.tm_mday, foo.tm_hour)

    rainbow_file = open (filenamestr+".tpdat","a")
  
    r = (data / 409.6)
    flt = "%6.3f" % r
    #r = calib_default_total_power(data)
    inter = globals()["calib_decln"]
    rainbow_file.write(str(ephem.hours(sidtime))+" "+flt+" "+str(inter)+"\n")
    rainbow_file.close()
    return(r)

def calib_numogate_ridge_observatory_fft(data,l):

    me = ephem.Observer()

    #
    # PyEphem wants lat/long as strings, rather than floats--took me quite
    #  a long time to figure that out.  If they don't arrive as strings,
    #  the calculations for sidereal time are complete garbage
    #
    me.long = str(-76.043)
    me.lat = str(44.967)

    me.date = ephem.now()
    sidtime = me.sidereal_time()

    foo = time.localtime()
    
    if not "calib_prefix" in globals():
        pfx = "./"
    else:
        pfx = globals()["calib_prefix"]
    filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
       foo.tm_mon, foo.tm_mday, foo.tm_hour)

    now = time.time()

    if not "calib_then" in globals():
        globals()["calib_then"] = now

    delta = (l/1024)*5
		
    if (now - globals()["calib_then"]) >= delta:

        globals()["calib_then"] = now
        rainbow_file = open (filenamestr+".sdat","a")
  
        r = calib_default_fft(data,l)
        inter = globals()["calib_decln"]
        rainbow_file.write("data:"+str(ephem.hours(sidtime))+" "+str(inter)+" "+str(r)+"\n")
        rainbow_file.close()
        return(r)

    return(data)

def calib_default_fft(db,l):
    return(db)

#
# We capture various parameters from the receive chain here, because
#  they can affect the calibration equations.
#
#
def calib_set_gain(gain):
    globals()["calib_gain_setting"] = gain

def calib_set_integ(integ):
    globals()["calib_integ_setting"] = integ

def calib_set_bw(bw):
    globals()["calib_bw_setting"] = bw

def calib_set_freq(freq):
    globals()["calib_freq_setting"] = freq

def calib_set_avg_alpha(alpha):
    globals()["calib_avg_alpha"] = alpha

def calib_set_interesting(inter):
    globals()["calib_is_interesting"] = inter

def calib_set_decln(dec):
    globals()["calib_decln"] = dec

def calib_set_prefix(pfx):
    globals()["calib_prefix"] = pfx