1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/* -*- c++ -*- */
/*
* Copyright 2006 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <iostream>
#include <string>
#include <fstream>
#include <unistd.h>
#include <gr_complex.h>
#include <gri_fft.h>
#include "time_series.h"
using namespace std;
/*!
* \file xambi.cc driver for computation of cross ambiguity
*
* Based on ideas liberally lifted from a version of xambi.cc
* obtained from John Sahr, that identified these people as authors:
* John Sahr jdsahr@u.washington.edu
* Frank Lind flind@haystack.mit.edu
* Chucai "Cliff" Zhou
* Melissa Meyer mgmeyer@ee.washington.edu
*
* Extensively revised since then.
*/
static int default_decimation = 40;
static int default_fftsize = 256;
static int default_naverages = 1000000; // infinite
/// usage for the xambi program
static void usage(char *argv0)
{
cerr << "usage: xambi [opts] scatterfile" << endl;
cerr << " where [opts] are" << endl;
cerr << " -x reffilename : Required" << endl;
cerr << " -o outputfilename[=xambi.out] : create or overwrite" << endl;
cerr << " -a averages[=100000] : restart accumulation; 100000 = infinite" << endl;
cerr << " -d decimationfactor[=40]" << endl;
cerr << " -f fftsize[=256]" << endl;
cerr << " -r range[=0] : first range" << endl;
cerr << " -n nranges[=1] : range count" << endl;
cerr << " -S start[=0] : starting offset in file" << endl;
cerr << " -N nsamples[=inf] : # of samples to process" << endl;
cerr << " -v : increment verbosity" << endl;
cerr << " -h : be helpful" << endl;
cerr << endl;
cerr << "The reffile and scatterfile are native-endian binary complex<float>" << endl;
cerr << "and must be sampled at the same rate." << endl;
exit(0);
}
gr_complex
complex_dot_product(const gr_complex *xx, const gr_complex *yy, int nterms)
{
gr_complex sum(0);
for (int i = 0; i < nterms; i++)
sum += xx[i] * yy[i]; // FIXME? conj(yy[i])
return sum;
}
/// the main driver
int
main(int argc, char *argv[])
{
char *ref_fname = 0; //< holds name of reference signal source
char *out_fname = 0; //< holds name of processed output
int decimation = default_decimation;
int range = 0; //< first range of range block
int nranges = 1; //< number of ranges of range block
int fftsize = default_fftsize;
int naverages = default_naverages;
int verbosity = 0;
int blocksize = 0;
int offset = 0;
unsigned long long starting_file_offset = 0;
unsigned long long nsamples_to_process = (unsigned long long) -1;
int f;
const gr_complex *x, *y;
const gr_complex *xx, *yy;
int c; // used to process the command line
int r; // an index to count over ranges
int i; // an index to count through the time series
int a;
while((c = getopt(argc,argv,"a:o:x:y:r:d:f:n:hvS:N:")) != EOF) {
switch(c) {
case 'x': ref_fname = optarg; break;
case 'o': out_fname = optarg; break;
case 'a': naverages = atoi(optarg); break;
case 'd': decimation = atoi(optarg); break;
case 'r': range = atoi(optarg); break;
case 'n': nranges = atoi(optarg); break;
case 'f': fftsize = atoi(optarg); break;
case 'S': starting_file_offset = strtoll(optarg, 0, 0); break;
case 'N': nsamples_to_process = strtoll(optarg, 0, 0); break;
case 'v': verbosity++; break;
case 'h': usage(argv[0]); break;
default: usage(argv[0]); break;
}
}
// Wrapper for FFTW 1d forward FFT. N.B. output is not scaled by 1/fftsize
gri_fft_complex fft(fftsize, true);
gr_complex *fft_input = fft.get_inbuf();
gr_complex *fft_output = fft.get_outbuf();
if(range < 0) {
cerr << "you specified -r " << range << "; must be non-negative (exit)" << endl;
exit(1);
}
if(nranges < 1) {
cerr << "you specified -n " << nranges << "; must be positive (exit)" << endl;
exit(1);
}
if(decimation < 1) {
cerr << "you specified -d " << decimation << "; must be positive (exit)" << endl;
exit(1);
}
if(naverages < 1) {
cerr << "you specified -a " << naverages << "; must be positive (exit)" << endl;
exit(1);
}
if(ref_fname == 0) {
cerr << "you must specify a reference signal with the -x option" << endl;
usage(argv[0]);
}
if (optind >= argc) {
cerr << "you must specify a scattering signal after all other options" << endl;
usage(argv[0]);
}
time_series X(sizeof(gr_complex), ref_fname,
starting_file_offset, nsamples_to_process);
time_series Y(sizeof(gr_complex), argv[optind],
starting_file_offset, nsamples_to_process); // add more for interferometry ...
float psd[fftsize*nranges];
if(out_fname == 0) {
char fname[200];
snprintf(fname, sizeof(fname), "%s.out", "xambi");
out_fname = fname;
}
ofstream Z(out_fname);
blocksize = fftsize*decimation + nranges;
offset = 0;
a = 0;
// the fftsize is squared because we're using norm, not abs,
// when computing the psd
float scale_factor = 1.0 / (fftsize * fftsize);
for(i = 0; i < nranges*fftsize; i++)
psd[i] = 0.0;
while(1){ // loop over data until exhausted.
if(verbosity > 1) {
cerr << " " << a; // write out the number of completed averages
cerr.flush();
}
x = (const gr_complex *) X.seek(offset, blocksize);
y = (const gr_complex *) Y.seek(offset + range, blocksize);
if(!x || !y) // ran out of data; stop integrating
break;
for(r = 0; r < nranges; r++) { // For Each Range ...
xx = x;
yy = y + r;
for(f = 0; f < fftsize; f++) { // and for each Doppler bin ...
// cross correlate and do a boxcar decimation
fft_input[f] = complex_dot_product(xx, yy, decimation);
xx += decimation;
yy += decimation;
}
fft.execute(); // input: fft_input; output: fft_output
for(f = 0; f < fftsize; f++) {
psd[r*fftsize + f] += norm(fft_output[f]);
}
} // end range
a++;
offset += fftsize * decimation;
if(a >= naverages) {
if(verbosity > 0)
cerr << " dumping " << endl;
for(i = 0; i < nranges*fftsize; i++) // normalize
psd[i] *= scale_factor;
Z.write((const char *) psd, nranges*fftsize*sizeof(float));
for(i = 0; i < nranges*fftsize; i++)
psd[i] = 0.0;
a = 0;
}
}
if(verbosity > 1)
printf("\n");
if(a > 0) {
for(i = 0; i < nranges*fftsize; i++) // normalize
psd[i] *= scale_factor;
Z.write((const char *) psd, nranges*fftsize*sizeof(float));
}
return 0;
}
|