1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
|
#include <cmath>
#include <QColorDialog>
#include <QMessageBox>
#include <spectrumdisplayform.h>
int SpectrumDisplayForm::_openGLWaterfall3DFlag = -1;
SpectrumDisplayForm::SpectrumDisplayForm(bool useOpenGL, QWidget* parent)
: QWidget(parent)
{
setupUi(this);
_useOpenGL = useOpenGL;
_systemSpecifiedFlag = false;
_intValidator = new QIntValidator(this);
_intValidator->setBottom(0);
_frequencyDisplayPlot = new FrequencyDisplayPlot(FrequencyPlotDisplayFrame);
_waterfallDisplayPlot = new WaterfallDisplayPlot(WaterfallPlotDisplayFrame);
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
//_waterfall3DDisplayPlot = new Waterfall3DDisplayPlot(Waterfall3DPlotDisplayFrame);
}
_timeDomainDisplayPlot = new TimeDomainDisplayPlot(TimeDomainDisplayFrame);
_constellationDisplayPlot = new ConstellationDisplayPlot(ConstellationDisplayFrame);
_numRealDataPoints = 1024;
_realFFTDataPoints = new double[_numRealDataPoints];
_averagedValues = new double[_numRealDataPoints];
_historyVector = new std::vector<double*>;
AvgLineEdit->setRange(0, 500); // Set range of Average box value from 0 to 500
MinHoldCheckBox_toggled( false );
MaxHoldCheckBox_toggled( false );
WaterfallMaximumIntensityWheel->setRange(-200, 0);
WaterfallMaximumIntensityWheel->setTickCnt(50);
WaterfallMinimumIntensityWheel->setRange(-200, 0);
WaterfallMinimumIntensityWheel->setTickCnt(50);
WaterfallMinimumIntensityWheel->setValue(-200);
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
Waterfall3DMaximumIntensityWheel->setRange(-200, 0);
Waterfall3DMaximumIntensityWheel->setTickCnt(50);
Waterfall3DMinimumIntensityWheel->setRange(-200, 0);
Waterfall3DMinimumIntensityWheel->setTickCnt(50);
Waterfall3DMinimumIntensityWheel->setValue(-200);
}
_peakFrequency = 0;
_peakAmplitude = -HUGE_VAL;
_noiseFloorAmplitude = -HUGE_VAL;
connect(_waterfallDisplayPlot, SIGNAL(UpdatedLowerIntensityLevel(const double)),
_frequencyDisplayPlot, SLOT(SetLowerIntensityLevel(const double)));
connect(_waterfallDisplayPlot, SIGNAL(UpdatedUpperIntensityLevel(const double)),
_frequencyDisplayPlot, SLOT(SetUpperIntensityLevel(const double)));
_frequencyDisplayPlot->SetLowerIntensityLevel(-200);
_frequencyDisplayPlot->SetUpperIntensityLevel(-200);
// Load up the acceptable FFT sizes...
FFTSizeComboBox->clear();
for(long fftSize = SpectrumGUIClass::MIN_FFT_SIZE; fftSize <= SpectrumGUIClass::MAX_FFT_SIZE; fftSize *= 2){
FFTSizeComboBox->insertItem(FFTSizeComboBox->count(), QString("%1").arg(fftSize));
}
Reset();
ToggleTabFrequency(false);
ToggleTabWaterfall(false);
ToggleTabWaterfall3D(false);
ToggleTabTime(false);
ToggleTabConstellation(false);
// Create a timer to update plots at the specified rate
displayTimer = new QTimer(this);
connect(displayTimer, SIGNAL(timeout()), this, SLOT(UpdateGuiTimer()));
}
SpectrumDisplayForm::~SpectrumDisplayForm()
{
// Qt deletes children when parent is deleted
// Don't worry about deleting Display Plots - they are deleted when parents are deleted
delete _intValidator;
delete[] _realFFTDataPoints;
delete[] _averagedValues;
for(unsigned int count = 0; count < _historyVector->size(); count++){
delete[] _historyVector->operator[](count);
}
delete _historyVector;
displayTimer->stop();
delete displayTimer;
}
void
SpectrumDisplayForm::setSystem( SpectrumGUIClass * newSystem,
const uint64_t numFFTDataPoints,
const uint64_t numTimeDomainDataPoints )
{
ResizeBuffers(numFFTDataPoints, numTimeDomainDataPoints);
if(newSystem != NULL){
_system = newSystem;
_systemSpecifiedFlag = true;
}
else{
_systemSpecifiedFlag = false;
}
}
void
SpectrumDisplayForm::newFrequencyData( const SpectrumUpdateEvent* spectrumUpdateEvent)
{
//_lastSpectrumEvent = (SpectrumUpdateEvent)(*spectrumUpdateEvent);
const std::complex<float>* complexDataPoints = spectrumUpdateEvent->getFFTPoints();
const uint64_t numFFTDataPoints = spectrumUpdateEvent->getNumFFTDataPoints();
const double* realTimeDomainDataPoints = spectrumUpdateEvent->getRealTimeDomainPoints();
const double* imagTimeDomainDataPoints = spectrumUpdateEvent->getImagTimeDomainPoints();
const uint64_t numTimeDomainDataPoints = spectrumUpdateEvent->getNumTimeDomainDataPoints();
const timespec dataTimestamp = spectrumUpdateEvent->getDataTimestamp();
const bool repeatDataFlag = spectrumUpdateEvent->getRepeatDataFlag();
const bool lastOfMultipleUpdatesFlag = spectrumUpdateEvent->getLastOfMultipleUpdateFlag();
const timespec generatedTimestamp = spectrumUpdateEvent->getEventGeneratedTimestamp();
// REMEMBER: The dataTimestamp is NOT valid when the repeat data flag is true...
ResizeBuffers(numFFTDataPoints, numTimeDomainDataPoints);
// Calculate the Magnitude of the complex point
const std::complex<float>* complexDataPointsPtr = complexDataPoints+numFFTDataPoints/2;
double* realFFTDataPointsPtr = _realFFTDataPoints;
double sumMean, localPeakAmplitude, localPeakFrequency;
const double fftBinSize = (_stopFrequency-_startFrequency) /
static_cast<double>(numFFTDataPoints);
localPeakAmplitude = -HUGE_VAL;
sumMean = 0.0;
// Run this twice to perform the fftshift operation on the data here as well
std::complex<float> scaleFactor = std::complex<float>((float)numFFTDataPoints);
for(uint64_t point = 0; point < numFFTDataPoints/2; point++){
std::complex<float> pt = (*complexDataPointsPtr) / scaleFactor;
*realFFTDataPointsPtr = 10.0*log10((pt.real() * pt.real() + pt.imag()*pt.imag()) + 1e-20);
if(*realFFTDataPointsPtr > localPeakAmplitude) {
localPeakFrequency = static_cast<float>(point) * fftBinSize;
localPeakAmplitude = *realFFTDataPointsPtr;
}
sumMean += *realFFTDataPointsPtr;
complexDataPointsPtr++;
realFFTDataPointsPtr++;
}
// This loop takes the first half of the input data and puts it in the
// second half of the plotted data
complexDataPointsPtr = complexDataPoints;
for(uint64_t point = 0; point < numFFTDataPoints/2; point++){
std::complex<float> pt = (*complexDataPointsPtr) / scaleFactor;
*realFFTDataPointsPtr = 10.0*log10((pt.real() * pt.real() + pt.imag()*pt.imag()) + 1e-20);
if(*realFFTDataPointsPtr > localPeakAmplitude) {
localPeakFrequency = static_cast<float>(point) * fftBinSize;
localPeakAmplitude = *realFFTDataPointsPtr;
}
sumMean += *realFFTDataPointsPtr;
complexDataPointsPtr++;
realFFTDataPointsPtr++;
}
// Don't update the averaging history if this is repeated data
if(!repeatDataFlag){
_AverageHistory(_realFFTDataPoints);
// Only use the local info if we are not repeating data
_peakAmplitude = localPeakAmplitude;
_peakFrequency = localPeakFrequency;
// calculate the spectral mean
// +20 because for the comparison below we only want to throw out bins
// that are significantly higher (and would, thus, affect the mean more)
const double meanAmplitude = (sumMean / numFFTDataPoints) + 20.0;
// now throw out any bins higher than the mean
sumMean = 0.0;
uint64_t newNumDataPoints = numFFTDataPoints;
for(uint64_t number = 0; number < numFFTDataPoints; number++){
if (_realFFTDataPoints[number] <= meanAmplitude)
sumMean += _realFFTDataPoints[number];
else
newNumDataPoints--;
}
if (newNumDataPoints == 0) // in the odd case that all
_noiseFloorAmplitude = meanAmplitude; // amplitudes are equal!
else
_noiseFloorAmplitude = sumMean / newNumDataPoints;
}
if(lastOfMultipleUpdatesFlag){
int tabindex = SpectrumTypeTab->currentIndex();
if(tabindex == d_plot_fft) {
_frequencyDisplayPlot->PlotNewData(_averagedValues, numFFTDataPoints,
_noiseFloorAmplitude, _peakFrequency,
_peakAmplitude, d_update_time);
}
if(tabindex == d_plot_time) {
_timeDomainDisplayPlot->PlotNewData(realTimeDomainDataPoints,
imagTimeDomainDataPoints,
numTimeDomainDataPoints,
d_update_time);
}
if(tabindex == d_plot_constellation) {
_constellationDisplayPlot->PlotNewData(realTimeDomainDataPoints,
imagTimeDomainDataPoints,
numTimeDomainDataPoints,
d_update_time);
}
// Don't update the repeated data for the waterfall
if(!repeatDataFlag){
if(tabindex == d_plot_waterfall) {
_waterfallDisplayPlot->PlotNewData(_realFFTDataPoints, numFFTDataPoints,
d_update_time, dataTimestamp,
spectrumUpdateEvent->getDroppedFFTFrames());
}
/*
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
if( _openGLWaterfall3DFlag == 1 && (tabindex == d_plot_waterfall3d)) {
_waterfall3DDisplayPlot->PlotNewData(_realFFTDataPoints, numFFTDataPoints,
d_update_time, dataTimestamp,
spectrumUpdateEvent->getDroppedFFTFrames());
}
}
*/
}
// Tell the system the GUI has been updated
if(_systemSpecifiedFlag){
_system->SetLastGUIUpdateTime(generatedTimestamp);
_system->DecrementPendingGUIUpdateEvents();
}
}
}
void
SpectrumDisplayForm::resizeEvent( QResizeEvent *e )
{
QSize s;
s.setWidth(FrequencyPlotDisplayFrame->width());
s.setHeight(FrequencyPlotDisplayFrame->height());
emit _frequencyDisplayPlot->resizeSlot(&s);
s.setWidth(TimeDomainDisplayFrame->width());
s.setHeight(TimeDomainDisplayFrame->height());
emit _timeDomainDisplayPlot->resizeSlot(&s);
s.setWidth(WaterfallPlotDisplayFrame->width());
s.setHeight(WaterfallPlotDisplayFrame->height());
emit _waterfallDisplayPlot->resizeSlot(&s);
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
s.setWidth(Waterfall3DPlotDisplayFrame->width());
s.setHeight(Waterfall3DPlotDisplayFrame->height());
//emit _waterfall3DDisplayPlot->resizeSlot(&s);
}
s.setWidth(ConstellationDisplayFrame->width());
s.setHeight(ConstellationDisplayFrame->height());
emit _constellationDisplayPlot->resizeSlot(&s);
}
void
SpectrumDisplayForm::customEvent( QEvent * e)
{
if(e->type() == QEvent::User+3){
if(_systemSpecifiedFlag){
WindowComboBox->setCurrentIndex(_system->GetWindowType());
FFTSizeComboBox->setCurrentIndex(_system->GetFFTSizeIndex());
//FFTSizeComboBox->setCurrentIndex(1);
}
waterfallMinimumIntensityChangedCB(WaterfallMinimumIntensityWheel->value());
waterfallMaximumIntensityChangedCB(WaterfallMaximumIntensityWheel->value());
// If the video card doesn't support OpenGL then don't display the 3D Waterfall
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
waterfall3DMinimumIntensityChangedCB(Waterfall3DMinimumIntensityWheel->value());
waterfall3DMaximumIntensityChangedCB(Waterfall3DMaximumIntensityWheel->value());
// Check for Hardware Acceleration of the OpenGL
/*
if(!_waterfall3DDisplayPlot->format().directRendering()){
// Only ask this once while the program is running...
if(_openGLWaterfall3DFlag == -1){
_openGLWaterfall3DFlag = 0;
if(QMessageBox::warning(this, "OpenGL Direct Rendering NOT Supported", "<center>The system's video card hardware or current drivers do not support direct hardware rendering of the OpenGL modules.</center><br><center>Software rendering is VERY processor intensive.</center><br><center>Do you want to use software rendering?</center>", QMessageBox::Yes, QMessageBox::No | QMessageBox::Default | QMessageBox::Escape) == QMessageBox::Yes){
_openGLWaterfall3DFlag = 1;
}
}
}
else{
_openGLWaterfall3DFlag = 1;
}
*/
}
if(_openGLWaterfall3DFlag != 1){
ToggleTabWaterfall3D(false);
}
// Clear any previous display
Reset();
}
else if(e->type() == 10005){
SpectrumUpdateEvent* spectrumUpdateEvent = (SpectrumUpdateEvent*)e;
newFrequencyData(spectrumUpdateEvent);
}
else if(e->type() == 10008){
setWindowTitle(((SpectrumWindowCaptionEvent*)e)->getLabel());
}
else if(e->type() == 10009){
Reset();
if(_systemSpecifiedFlag){
_system->ResetPendingGUIUpdateEvents();
}
}
else if(e->type() == 10010){
_startFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetStartFrequency();
_stopFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetStopFrequency();
_centerFrequency = ((SpectrumFrequencyRangeEvent*)e)->GetCenterFrequency();
UseRFFrequenciesCB(UseRFFrequenciesCheckBox->isChecked());
}
}
void
SpectrumDisplayForm::UpdateGuiTimer()
{
// This is called by the displayTimer and redraws the canvases of
// all of the plots.
_frequencyDisplayPlot->canvas()->update();
_waterfallDisplayPlot->canvas()->update();
//if((QGLFormat::hasOpenGL()) && (_useOpenGL))
//_waterfall3DDisplayPlot->canvas()->update();
_timeDomainDisplayPlot->canvas()->update();
_constellationDisplayPlot->canvas()->update();
}
void
SpectrumDisplayForm::AvgLineEdit_valueChanged( int value )
{
SetAverageCount(value);
}
void
SpectrumDisplayForm::MaxHoldCheckBox_toggled( bool newState )
{
MaxHoldResetBtn->setEnabled(newState);
_frequencyDisplayPlot->SetMaxFFTVisible(newState);
MaxHoldResetBtn_clicked();
}
void
SpectrumDisplayForm::MinHoldCheckBox_toggled( bool newState )
{
MinHoldResetBtn->setEnabled(newState);
_frequencyDisplayPlot->SetMinFFTVisible(newState);
MinHoldResetBtn_clicked();
}
void
SpectrumDisplayForm::MinHoldResetBtn_clicked()
{
_frequencyDisplayPlot->ClearMinData();
_frequencyDisplayPlot->replot();
}
void
SpectrumDisplayForm::MaxHoldResetBtn_clicked()
{
_frequencyDisplayPlot->ClearMaxData();
_frequencyDisplayPlot->replot();
}
void
SpectrumDisplayForm::TabChanged(int index)
{
// This might be dangerous to call this with NULL
resizeEvent(NULL);
}
void
SpectrumDisplayForm::SetFrequencyRange(const double newCenterFrequency,
const double newStartFrequency,
const double newStopFrequency)
{
double fdiff;
if(UseRFFrequenciesCheckBox->isChecked()) {
fdiff = newCenterFrequency;
}
else {
fdiff = std::max(fabs(newStartFrequency), fabs(newStopFrequency));
}
if(fdiff > 0) {
std::string strunits[4] = {"Hz", "kHz", "MHz", "GHz"};
std::string strtime[4] = {"sec", "ms", "us", "ns"};
double units10 = floor(log10(fdiff));
double units3 = std::max(floor(units10 / 3.0), 0.0);
double units = pow(10, (units10-fmod(units10, 3.0)));
int iunit = static_cast<int>(units3);
_startFrequency = newStartFrequency;
_stopFrequency = newStopFrequency;
_centerFrequency = newCenterFrequency;
_frequencyDisplayPlot->SetFrequencyRange(_startFrequency,
_stopFrequency,
_centerFrequency,
UseRFFrequenciesCheckBox->isChecked(),
units, strunits[iunit]);
_waterfallDisplayPlot->SetFrequencyRange(_startFrequency,
_stopFrequency,
_centerFrequency,
UseRFFrequenciesCheckBox->isChecked(),
units, strunits[iunit]);
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
/*
_waterfall3DDisplayPlot->SetFrequencyRange(_startFrequency,
_stopFrequency,
_centerFrequency,
UseRFFrequenciesCheckBox->isChecked(),
units, strunits[iunit]);
*/
}
_timeDomainDisplayPlot->SetSampleRate(_stopFrequency - _startFrequency,
units, strtime[iunit]);
}
}
int
SpectrumDisplayForm::GetAverageCount()
{
return _historyVector->size();
}
void
SpectrumDisplayForm::SetAverageCount(const int newCount)
{
if(newCount > -1){
if(newCount != static_cast<int>(_historyVector->size())){
std::vector<double*>::iterator pos;
while(newCount < static_cast<int>(_historyVector->size())){
pos = _historyVector->begin();
delete[] (*pos);
_historyVector->erase(pos);
}
while(newCount > static_cast<int>(_historyVector->size())){
_historyVector->push_back(new double[_numRealDataPoints]);
}
AverageDataReset();
}
}
}
void
SpectrumDisplayForm::_AverageHistory(const double* newBuffer)
{
if(_numRealDataPoints > 0){
if(_historyVector->size() > 0){
memcpy(_historyVector->operator[](_historyEntry), newBuffer,
_numRealDataPoints*sizeof(double));
// Increment the next location to store data
_historyEntryCount++;
if(_historyEntryCount > static_cast<int>(_historyVector->size())){
_historyEntryCount = _historyVector->size();
}
_historyEntry = (++_historyEntry)%_historyVector->size();
// Total up and then average the values
double sum;
for(uint64_t location = 0; location < _numRealDataPoints; location++){
sum = 0;
for(int number = 0; number < _historyEntryCount; number++){
sum += _historyVector->operator[](number)[location];
}
_averagedValues[location] = sum/static_cast<double>(_historyEntryCount);
}
}
else{
memcpy(_averagedValues, newBuffer, _numRealDataPoints*sizeof(double));
}
}
}
void
SpectrumDisplayForm::ResizeBuffers( const uint64_t numFFTDataPoints,
const uint64_t /*numTimeDomainDataPoints*/ )
{
// Convert from Complex to Real for certain Displays
if(_numRealDataPoints != numFFTDataPoints){
_numRealDataPoints = numFFTDataPoints;
delete[] _realFFTDataPoints;
delete[] _averagedValues;
_realFFTDataPoints = new double[_numRealDataPoints];
_averagedValues = new double[_numRealDataPoints];
memset(_realFFTDataPoints, 0x0, _numRealDataPoints*sizeof(double));
const int historySize = _historyVector->size();
SetAverageCount(0); // Clear the existing history
SetAverageCount(historySize);
Reset();
}
}
void
SpectrumDisplayForm::Reset()
{
AverageDataReset();
_waterfallDisplayPlot->Reset();
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
//_waterfall3DDisplayPlot->Reset();
}
}
void
SpectrumDisplayForm::AverageDataReset()
{
_historyEntry = 0;
_historyEntryCount = 0;
memset(_averagedValues, 0x0, _numRealDataPoints*sizeof(double));
MaxHoldResetBtn_clicked();
MinHoldResetBtn_clicked();
}
void
SpectrumDisplayForm::closeEvent( QCloseEvent *e )
{
if(_systemSpecifiedFlag){
_system->SetWindowOpenFlag(false);
}
qApp->processEvents();
QWidget::closeEvent(e);
}
void
SpectrumDisplayForm::WindowTypeChanged( int newItem )
{
if(_systemSpecifiedFlag){
_system->SetWindowType(newItem);
}
}
void
SpectrumDisplayForm::UseRFFrequenciesCB( bool useRFFlag )
{
SetFrequencyRange(_centerFrequency, _startFrequency, _stopFrequency);
}
void
SpectrumDisplayForm::waterfallMaximumIntensityChangedCB( double newValue )
{
if(newValue > WaterfallMinimumIntensityWheel->value()){
WaterfallMaximumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0));
}
else{
WaterfallMaximumIntensityWheel->setValue(WaterfallMinimumIntensityWheel->value());
}
_waterfallDisplayPlot->SetIntensityRange(WaterfallMinimumIntensityWheel->value(),
WaterfallMaximumIntensityWheel->value());
}
void
SpectrumDisplayForm::waterfallMinimumIntensityChangedCB( double newValue )
{
if(newValue < WaterfallMaximumIntensityWheel->value()){
WaterfallMinimumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0));
}
else{
WaterfallMinimumIntensityWheel->setValue(WaterfallMaximumIntensityWheel->value());
}
_waterfallDisplayPlot->SetIntensityRange(WaterfallMinimumIntensityWheel->value(),
WaterfallMaximumIntensityWheel->value());
}
void
SpectrumDisplayForm::waterfall3DMaximumIntensityChangedCB( double newValue )
{
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
if(newValue > Waterfall3DMinimumIntensityWheel->value()){
Waterfall3DMaximumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0));
}
else{
Waterfall3DMaximumIntensityWheel->setValue(Waterfall3DMinimumIntensityWheel->value());
}
/*
_waterfall3DDisplayPlot->SetIntensityRange(Waterfall3DMinimumIntensityWheel->value(),
Waterfall3DMaximumIntensityWheel->value());
*/
}
}
void
SpectrumDisplayForm::waterfall3DMinimumIntensityChangedCB( double newValue )
{
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
if(newValue < Waterfall3DMaximumIntensityWheel->value()){
Waterfall3DMinimumIntensityLabel->setText(QString("%1 dB").arg(newValue, 0, 'f', 0));
}
else{
Waterfall3DMinimumIntensityWheel->setValue(Waterfall3DMaximumIntensityWheel->value());
}
/*
_waterfall3DDisplayPlot->SetIntensityRange(Waterfall3DMinimumIntensityWheel->value(),
Waterfall3DMaximumIntensityWheel->value());
*/
}
}
void
SpectrumDisplayForm::FFTComboBoxSelectedCB( const QString &fftSizeString )
{
if(_systemSpecifiedFlag){
_system->SetFFTSize(fftSizeString.toLong());
}
}
void
SpectrumDisplayForm::WaterfallAutoScaleBtnCB()
{
double minimumIntensity = _noiseFloorAmplitude - 5;
if(minimumIntensity < WaterfallMinimumIntensityWheel->minValue()){
minimumIntensity = WaterfallMinimumIntensityWheel->minValue();
}
WaterfallMinimumIntensityWheel->setValue(minimumIntensity);
double maximumIntensity = _peakAmplitude + 10;
if(maximumIntensity > WaterfallMaximumIntensityWheel->maxValue()){
maximumIntensity = WaterfallMaximumIntensityWheel->maxValue();
}
WaterfallMaximumIntensityWheel->setValue(maximumIntensity);
waterfallMaximumIntensityChangedCB(maximumIntensity);
}
void
SpectrumDisplayForm::Waterfall3DAutoScaleBtnCB()
{
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
double minimumIntensity = _noiseFloorAmplitude - 5;
if(minimumIntensity < Waterfall3DMinimumIntensityWheel->minValue()){
minimumIntensity = Waterfall3DMinimumIntensityWheel->minValue();
}
Waterfall3DMinimumIntensityWheel->setValue(minimumIntensity);
double maximumIntensity = _peakAmplitude + 10;
if(maximumIntensity > Waterfall3DMaximumIntensityWheel->maxValue()){
maximumIntensity = Waterfall3DMaximumIntensityWheel->maxValue();
}
Waterfall3DMaximumIntensityWheel->setValue(maximumIntensity);
waterfallMaximumIntensityChangedCB(maximumIntensity);
}
}
void
SpectrumDisplayForm::WaterfallIntensityColorTypeChanged( int newType )
{
QColor lowIntensityColor;
QColor highIntensityColor;
if(newType == WaterfallDisplayPlot::INTENSITY_COLOR_MAP_TYPE_USER_DEFINED){
// Select the Low Intensity Color
lowIntensityColor = _waterfallDisplayPlot->GetUserDefinedLowIntensityColor();
if(!lowIntensityColor.isValid()){
lowIntensityColor = Qt::black;
}
QMessageBox::information(this, "Low Intensity Color Selection", "In the next window, select the low intensity color for the waterfall display", QMessageBox::Ok);
lowIntensityColor = QColorDialog::getColor(lowIntensityColor, this);
// Select the High Intensity Color
highIntensityColor = _waterfallDisplayPlot->GetUserDefinedHighIntensityColor();
if(!highIntensityColor.isValid()){
highIntensityColor = Qt::white;
}
QMessageBox::information(this, "High Intensity Color Selection", "In the next window, select the high intensity color for the waterfall display", QMessageBox::Ok);
highIntensityColor = QColorDialog::getColor(highIntensityColor, this);
}
_waterfallDisplayPlot->SetIntensityColorMapType(newType, lowIntensityColor, highIntensityColor);
}
void
SpectrumDisplayForm::Waterfall3DIntensityColorTypeChanged( int newType )
{
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
QColor lowIntensityColor;
QColor highIntensityColor;
if(newType == Waterfall3DDisplayPlot::INTENSITY_COLOR_MAP_TYPE_USER_DEFINED){
// Select the Low Intensity Color
lowIntensityColor = _waterfallDisplayPlot->GetUserDefinedLowIntensityColor();
if(!lowIntensityColor.isValid()){
lowIntensityColor = Qt::black;
}
QMessageBox::information(this, "Low Intensity Color Selection", "In the next window, select the low intensity color for the waterfall display", QMessageBox::Ok);
lowIntensityColor = QColorDialog::getColor(lowIntensityColor, this);
// Select the High Intensity Color
highIntensityColor = _waterfallDisplayPlot->GetUserDefinedHighIntensityColor();
if(!highIntensityColor.isValid()){
highIntensityColor = Qt::white;
}
QMessageBox::information(this, "High Intensity Color Selection", "In the next window, select the high intensity color for the waterfall display", QMessageBox::Ok);
highIntensityColor = QColorDialog::getColor(highIntensityColor, this);
}
/*
_waterfall3DDisplayPlot->SetIntensityColorMapType(newType, lowIntensityColor,
highIntensityColor);
*/
}
}
void
SpectrumDisplayForm::ToggleTabFrequency(const bool state)
{
if(state == true) {
if(d_plot_fft == -1) {
SpectrumTypeTab->addTab(FrequencyPage, "Frequency Display");
d_plot_fft = SpectrumTypeTab->count()-1;
}
}
else {
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(FrequencyPage));
d_plot_fft = -1;
}
}
void
SpectrumDisplayForm::ToggleTabWaterfall(const bool state)
{
if(state == true) {
if(d_plot_waterfall == -1) {
SpectrumTypeTab->addTab(WaterfallPage, "Waterfall Display");
d_plot_waterfall = SpectrumTypeTab->count()-1;
}
}
else {
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(WaterfallPage));
d_plot_waterfall = -1;
}
}
void
SpectrumDisplayForm::ToggleTabWaterfall3D(const bool state)
{
if(state == true) {
/*
if((QGLFormat::hasOpenGL()) && (_useOpenGL)) {
if(d_plot_waterfall3d == -1) {
SpectrumTypeTab->addTab(Waterfall3DPage, "3D Waterfall Display");
d_plot_waterfall3d = SpectrumTypeTab->count()-1;
}
}
*/
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(Waterfall3DPage));
d_plot_waterfall3d = -1;
fprintf(stderr, "\nWARNING: The Waterfall3D plot has been disabled until we get it working.\n\n");
}
else {
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(Waterfall3DPage));
d_plot_waterfall3d = -1;
}
}
void
SpectrumDisplayForm::ToggleTabTime(const bool state)
{
if(state == true) {
if(d_plot_time == -1) {
SpectrumTypeTab->addTab(TimeDomainPage, "Time Domain Display");
d_plot_time = SpectrumTypeTab->count()-1;
}
}
else {
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(TimeDomainPage));
d_plot_time = -1;
}
}
void
SpectrumDisplayForm::ToggleTabConstellation(const bool state)
{
if(state == true) {
if(d_plot_constellation == -1) {
SpectrumTypeTab->addTab(ConstellationPage, "Constellation Display");
d_plot_constellation = SpectrumTypeTab->count()-1;
}
}
else {
SpectrumTypeTab->removeTab(SpectrumTypeTab->indexOf(ConstellationPage));
d_plot_constellation = -1;
}
}
void
SpectrumDisplayForm::SetTimeDomainAxis(double min, double max)
{
_timeDomainDisplayPlot->set_yaxis(min, max);
}
void
SpectrumDisplayForm::SetConstellationAxis(double xmin, double xmax,
double ymin, double ymax)
{
_constellationDisplayPlot->set_axis(xmin, xmax, ymin, ymax);
}
void
SpectrumDisplayForm::SetConstellationPenSize(int size)
{
_constellationDisplayPlot->set_pen_size( size );
}
void
SpectrumDisplayForm::SetFrequencyAxis(double min, double max)
{
_frequencyDisplayPlot->set_yaxis(min, max);
}
void
SpectrumDisplayForm::SetUpdateTime(double t)
{
d_update_time = t;
// QTimer class takes millisecond input
displayTimer->start(d_update_time*1000);
}
|