1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
#!/usr/bin/env python
#
# Copyright 2009,2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr
import filter_swig as filter
import optfir
class channelizer_ccf(gr.hier_block2):
'''
Make a Polyphase Filter channelizer (complex in, complex out, floating-point taps)
This simplifies the interface by allowing a single input stream to connect to this block.
It will then output a stream for each channel.
'''
def __init__(self, numchans, taps=None, oversample_rate=1, atten=100):
gr.hier_block2.__init__(self, "pfb_channelizer_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(numchans, numchans, gr.sizeof_gr_complex))
self._nchans = numchans
self._oversample_rate = oversample_rate
if taps is not None:
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._nchans)
self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps,
self._oversample_rate)
self.connect(self, self.s2ss)
for i in xrange(self._nchans):
self.connect((self.s2ss,i), (self.pfb,i))
self.connect((self.pfb,i), (self,i))
def set_channel_map(self, newmap):
self.pfb.set_channel_map(newmap)
class interpolator_ccf(gr.hier_block2):
'''
Make a Polyphase Filter interpolator (complex in, complex out, floating-point taps)
The block takes a single complex stream in and outputs a single complex
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, interp, taps=None, atten=100):
gr.hier_block2.__init__(self, "pfb_interpolator_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(1, 1, gr.sizeof_gr_complex))
self._interp = interp
self._taps = taps
if taps is not None:
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.99
made = False
while not made:
try:
self._taps = optfir.low_pass(self._interp, self._interp, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_interpolator_ccf(self._interp, self._taps)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
class decimator_ccf(gr.hier_block2):
'''
Make a Polyphase Filter decimator (complex in, complex out, floating-point taps)
This simplifies the interface by allowing a single input stream to connect to this block.
It will then output a stream that is the decimated output stream.
'''
def __init__(self, decim, taps=None, channel=0, atten=100):
gr.hier_block2.__init__(self, "pfb_decimator_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(1, 1, gr.sizeof_gr_complex))
self._decim = decim
self._channel = channel
if taps is not None:
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
made = False
while not made:
try:
self._taps = optfir.low_pass(1, self._decim, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._decim)
self.pfb = filter.pfb_decimator_ccf(self._decim, self._taps, self._channel)
self.connect(self, self.s2ss)
for i in xrange(self._decim):
self.connect((self.s2ss,i), (self.pfb,i))
self.connect(self.pfb, self)
class arb_resampler_ccf(gr.hier_block2):
'''
Convenience wrapper for the polyphase filterbank arbitrary resampler.
The block takes a single complex stream in and outputs a single complex
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, rate, taps=None, flt_size=32, atten=100):
gr.hier_block2.__init__(self, "pfb_arb_resampler_ccf",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
self._rate = rate
self._size = flt_size
if taps is not None:
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
#self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten)
made = False
while not made:
try:
self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_arb_resampler_ccf(self._rate, self._taps, self._size)
#print "PFB has %d taps\n" % (len(self._taps),)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
# Note -- set_taps not implemented in base class yet
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_rate(self, rate):
self.pfb.set_rate(rate)
class arb_resampler_fff(gr.hier_block2):
'''
Convenience wrapper for the polyphase filterbank arbitrary resampler.
The block takes a single float stream in and outputs a single float
stream out. As such, it requires no extra glue to handle the input/output
streams. This block is provided to be consistent with the interface to the
other PFB block.
'''
def __init__(self, rate, taps=None, flt_size=32, atten=100):
gr.hier_block2.__init__(self, "pfb_arb_resampler_fff",
gr.io_signature(1, 1, gr.sizeof_float), # Input signature
gr.io_signature(1, 1, gr.sizeof_float)) # Output signature
self._rate = rate
self._size = flt_size
if taps is not None:
self._taps = taps
else:
# Create a filter that covers the full bandwidth of the input signal
bw = 0.4
tb = 0.2
ripple = 0.1
#self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten)
made = False
while not made:
try:
self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten)
made = True
except RuntimeError:
ripple += 0.01
made = False
print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple))
# Build in an exit strategy; if we've come this far, it ain't working.
if(ripple >= 1.0):
raise RuntimeError("optfir could not generate an appropriate filter.")
self.pfb = filter.pfb_arb_resampler_fff(self._rate, self._taps, self._size)
#print "PFB has %d taps\n" % (len(self._taps),)
self.connect(self, self.pfb)
self.connect(self.pfb, self)
# Note -- set_taps not implemented in base class yet
def set_taps(self, taps):
self.pfb.set_taps(taps)
def set_rate(self, rate):
self.pfb.set_rate(rate)
|