1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
#
# Copyright 2004,2005,2009 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
'''
Routines for designing optimal FIR filters.
For a great intro to how all this stuff works, see section 6.6 of
"Digital Signal Processing: A Practical Approach", Emmanuael C. Ifeachor
and Barrie W. Jervis, Adison-Wesley, 1993. ISBN 0-201-54413-X.
'''
import math, cmath
import filter_swig as filter
# ----------------------------------------------------------------
## Builds a low pass filter.
# @param gain Filter gain in the passband (linear)
# @param Fs Sampling rate (sps)
# @param freq1 End of pass band (in Hz)
# @param freq2 Start of stop band (in Hz)
# @param passband_ripple_db Pass band ripple in dB (should be small, < 1)
# @param stopband_atten_db Stop band attenuation in dB (should be large, >= 60)
# @param nextra_taps Extra taps to use in the filter (default=2)
def low_pass (gain, Fs, freq1, freq2, passband_ripple_db, stopband_atten_db,
nextra_taps=2):
passband_dev = passband_ripple_to_dev (passband_ripple_db)
stopband_dev = stopband_atten_to_dev (stopband_atten_db)
desired_ampls = (gain, 0)
(n, fo, ao, w) = remezord ([freq1, freq2], desired_ampls,
[passband_dev, stopband_dev], Fs)
# The remezord typically under-estimates the filter order, so add 2 taps by default
taps = filter.pm_remez (n + nextra_taps, fo, ao, w, "bandpass")
return taps
## Builds a band pass filter.
# @param gain Filter gain in the passband (linear)
# @param Fs Sampling rate (sps)
# @param freq_sb1 End of stop band (in Hz)
# @param freq_pb1 Start of pass band (in Hz)
# @param freq_pb2 End of pass band (in Hz)
# @param freq_sb2 Start of stop band (in Hz)
# @param passband_ripple_db Pass band ripple in dB (should be small, < 1)
# @param stopband_atten_db Stop band attenuation in dB (should be large, >= 60)
# @param nextra_taps Extra taps to use in the filter (default=2)
def band_pass (gain, Fs, freq_sb1, freq_pb1, freq_pb2, freq_sb2,
passband_ripple_db, stopband_atten_db,
nextra_taps=2):
passband_dev = passband_ripple_to_dev (passband_ripple_db)
stopband_dev = stopband_atten_to_dev (stopband_atten_db)
desired_ampls = (0, gain, 0)
desired_freqs = [freq_sb1, freq_pb1, freq_pb2, freq_sb2]
desired_ripple = [stopband_dev, passband_dev, stopband_dev]
(n, fo, ao, w) = remezord (desired_freqs, desired_ampls,
desired_ripple, Fs)
# The remezord typically under-estimates the filter order, so add 2 taps by default
taps = filter.pm_remez (n + nextra_taps, fo, ao, w, "bandpass")
return taps
## Builds a band pass filter with complex taps by making an LPF and
# spinning it up to the right center frequency
# @param gain Filter gain in the passband (linear)
# @param Fs Sampling rate (sps)
# @param freq_sb1 End of stop band (in Hz)
# @param freq_pb1 Start of pass band (in Hz)
# @param freq_pb2 End of pass band (in Hz)
# @param freq_sb2 Start of stop band (in Hz)
# @param passband_ripple_db Pass band ripple in dB (should be small, < 1)
# @param stopband_atten_db Stop band attenuation in dB (should be large, >= 60)
# @param nextra_taps Extra taps to use in the filter (default=2)
def complex_band_pass (gain, Fs, freq_sb1, freq_pb1, freq_pb2, freq_sb2,
passband_ripple_db, stopband_atten_db,
nextra_taps=2):
center_freq = (freq_pb2 + freq_pb1) / 2.0
lp_pb = (freq_pb2 - center_freq)/1.0
lp_sb = freq_sb2 - center_freq
lptaps = low_pass(gain, Fs, lp_pb, lp_sb, passband_ripple_db,
stopband_atten_db, nextra_taps)
spinner = [cmath.exp(2j*cmath.pi*center_freq/Fs*i) for i in xrange(len(lptaps))]
taps = [s*t for s,t in zip(spinner, lptaps)]
return taps
## Builds a band reject filter
# spinning it up to the right center frequency
# @param gain Filter gain in the passband (linear)
# @param Fs Sampling rate (sps)
# @param freq_pb1 End of pass band (in Hz)
# @param freq_sb1 Start of stop band (in Hz)
# @param freq_sb2 End of stop band (in Hz)
# @param freq_pb2 Start of pass band (in Hz)
# @param passband_ripple_db Pass band ripple in dB (should be small, < 1)
# @param stopband_atten_db Stop band attenuation in dB (should be large, >= 60)
# @param nextra_taps Extra taps to use in the filter (default=2)
def band_reject (gain, Fs, freq_pb1, freq_sb1, freq_sb2, freq_pb2,
passband_ripple_db, stopband_atten_db,
nextra_taps=2):
passband_dev = passband_ripple_to_dev (passband_ripple_db)
stopband_dev = stopband_atten_to_dev (stopband_atten_db)
desired_ampls = (gain, 0, gain)
desired_freqs = [freq_pb1, freq_sb1, freq_sb2, freq_pb2]
desired_ripple = [passband_dev, stopband_dev, passband_dev]
(n, fo, ao, w) = remezord (desired_freqs, desired_ampls,
desired_ripple, Fs)
# Make sure we use an odd number of taps
if((n+nextra_taps)%2 == 1):
n += 1
# The remezord typically under-estimates the filter order, so add 2 taps by default
taps = filter.pm_remez (n + nextra_taps, fo, ao, w, "bandpass")
return taps
## Builds a high pass filter.
# @param gain Filter gain in the passband (linear)
# @param Fs Sampling rate (sps)
# @param freq1 End of stop band (in Hz)
# @param freq2 Start of pass band (in Hz)
# @param passband_ripple_db Pass band ripple in dB (should be small, < 1)
# @param stopband_atten_db Stop band attenuation in dB (should be large, >= 60)
# @param nextra_taps Extra taps to use in the filter (default=2)
def high_pass (gain, Fs, freq1, freq2, passband_ripple_db, stopband_atten_db,
nextra_taps=2):
passband_dev = passband_ripple_to_dev (passband_ripple_db)
stopband_dev = stopband_atten_to_dev (stopband_atten_db)
desired_ampls = (0, 1)
(n, fo, ao, w) = remezord ([freq1, freq2], desired_ampls,
[stopband_dev, passband_dev], Fs)
# For a HPF, we need to use an odd number of taps
# In filter.remez, ntaps = n+1, so n must be even
if((n+nextra_taps)%2 == 1):
n += 1
# The remezord typically under-estimates the filter order, so add 2 taps by default
taps = filter.pm_remez (n + nextra_taps, fo, ao, w, "bandpass")
return taps
# ----------------------------------------------------------------
def stopband_atten_to_dev (atten_db):
"""Convert a stopband attenuation in dB to an absolute value"""
return 10**(-atten_db/20)
def passband_ripple_to_dev (ripple_db):
"""Convert passband ripple spec expressed in dB to an absolute value"""
return (10**(ripple_db/20)-1)/(10**(ripple_db/20)+1)
# ----------------------------------------------------------------
def remezord (fcuts, mags, devs, fsamp = 2):
'''
FIR order estimator (lowpass, highpass, bandpass, mulitiband).
(n, fo, ao, w) = remezord (f, a, dev)
(n, fo, ao, w) = remezord (f, a, dev, fs)
(n, fo, ao, w) = remezord (f, a, dev) finds the approximate order,
normalized frequency band edges, frequency band amplitudes, and
weights that meet input specifications f, a, and dev, to use with
the remez command.
* f is a sequence of frequency band edges (between 0 and Fs/2, where
Fs is the sampling frequency), and a is a sequence specifying the
desired amplitude on the bands defined by f. The length of f is
twice the length of a, minus 2. The desired function is
piecewise constant.
* dev is a sequence the same size as a that specifies the maximum
allowable deviation or ripples between the frequency response
and the desired amplitude of the output filter, for each band.
Use remez with the resulting order n, frequency sequence fo,
amplitude response sequence ao, and weights w to design the filter b
which approximately meets the specifications given by remezord
input parameters f, a, and dev:
b = remez (n, fo, ao, w)
(n, fo, ao, w) = remezord (f, a, dev, Fs) specifies a sampling frequency Fs.
Fs defaults to 2 Hz, implying a Nyquist frequency of 1 Hz. You can
therefore specify band edges scaled to a particular applications
sampling frequency.
In some cases remezord underestimates the order n. If the filter
does not meet the specifications, try a higher order such as n+1
or n+2.
'''
# get local copies
fcuts = fcuts[:]
mags = mags[:]
devs = devs[:]
for i in range (len (fcuts)):
fcuts[i] = float (fcuts[i]) / fsamp
nf = len (fcuts)
nm = len (mags)
nd = len (devs)
nbands = nm
if nm != nd:
raise ValueError, "Length of mags and devs must be equal"
if nf != 2 * (nbands - 1):
raise ValueError, "Length of f must be 2 * len (mags) - 2"
for i in range (len (mags)):
if mags[i] != 0: # if not stopband, get relative deviation
devs[i] = devs[i] / mags[i]
# separate the passband and stopband edges
f1 = fcuts[0::2]
f2 = fcuts[1::2]
n = 0
min_delta = 2
for i in range (len (f1)):
if f2[i] - f1[i] < min_delta:
n = i
min_delta = f2[i] - f1[i]
if nbands == 2:
# lowpass or highpass case (use formula)
l = lporder (f1[n], f2[n], devs[0], devs[1])
else:
# bandpass or multipass case
# try different lowpasses and take the worst one that
# goes through the BP specs
l = 0
for i in range (1, nbands-1):
l1 = lporder (f1[i-1], f2[i-1], devs[i], devs[i-1])
l2 = lporder (f1[i], f2[i], devs[i], devs[i+1])
l = max (l, l1, l2)
n = int (math.ceil (l)) - 1 # need order, not length for remez
# cook up remez compatible result
ff = [0] + fcuts + [1]
for i in range (1, len (ff) - 1):
ff[i] *= 2
aa = []
for a in mags:
aa = aa + [a, a]
max_dev = max (devs)
wts = [1] * len(devs)
for i in range (len (wts)):
wts[i] = max_dev / devs[i]
return (n, ff, aa, wts)
# ----------------------------------------------------------------
def lporder (freq1, freq2, delta_p, delta_s):
'''
FIR lowpass filter length estimator. freq1 and freq2 are
normalized to the sampling frequency. delta_p is the passband
deviation (ripple), delta_s is the stopband deviation (ripple).
Note, this works for high pass filters too (freq1 > freq2), but
doesnt work well if the transition is near f == 0 or f == fs/2
From Herrmann et al (1973), Practical design rules for optimum
finite impulse response filters. Bell System Technical J., 52, 769-99
'''
df = abs (freq2 - freq1)
ddp = math.log10 (delta_p)
dds = math.log10 (delta_s)
a1 = 5.309e-3
a2 = 7.114e-2
a3 = -4.761e-1
a4 = -2.66e-3
a5 = -5.941e-1
a6 = -4.278e-1
b1 = 11.01217
b2 = 0.5124401
t1 = a1 * ddp * ddp
t2 = a2 * ddp
t3 = a4 * ddp * ddp
t4 = a5 * ddp
dinf=((t1 + t2 + a3) * dds) + (t3 + t4 + a6)
ff = b1 + b2 * (ddp - dds)
n = dinf / df - ff * df + 1
return n
def bporder (freq1, freq2, delta_p, delta_s):
'''
FIR bandpass filter length estimator. freq1 and freq2 are
normalized to the sampling frequency. delta_p is the passband
deviation (ripple), delta_s is the stopband deviation (ripple).
From Mintzer and Liu (1979)
'''
df = abs (freq2 - freq1)
ddp = math.log10 (delta_p)
dds = math.log10 (delta_s)
a1 = 0.01201
a2 = 0.09664
a3 = -0.51325
a4 = 0.00203
a5 = -0.57054
a6 = -0.44314
t1 = a1 * ddp * ddp
t2 = a2 * ddp
t3 = a4 * ddp * ddp
t4 = a5 * ddp
cinf = dds * (t1 + t2 + a3) + t3 + t4 + a6
ginf = -14.6 * math.log10 (delta_p / delta_s) - 16.9
n = cinf / df + ginf * df + 1
return n
|