1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#!/usr/bin/env python
#
# Copyright 2010,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, digital
from gnuradio import filter
try:
import scipy
from scipy import fftpack
except ImportError:
print "Error: Program requires scipy (see: www.scipy.org)."
sys.exit(1)
try:
import pylab
except ImportError:
print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
sys.exit(1)
fftlen = 8192
def main():
N = 10000
fs = 2000.0
Ts = 1.0/fs
t = scipy.arange(0, N*Ts, Ts)
# When playing with the number of channels, be careful about the filter
# specs and the channel map of the synthesizer set below.
nchans = 10
# Build the filter(s)
bw = 1000
tb = 400
proto_taps = filter.firdes.low_pass_2(1, nchans*fs,
bw, tb, 80,
filter.firdes.WIN_BLACKMAN_hARRIS)
print "Filter length: ", len(proto_taps)
# Create a modulated signal
npwr = 0.01
data = scipy.random.randint(0, 256, N)
rrc_taps = filter.firdes.root_raised_cosine(1, 2, 1, 0.35, 41)
src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False)
mod = digital.bpsk_mod(samples_per_symbol=2)
chan = gr.channel_model(npwr)
rrc = filter.fft_filter_ccc(1, rrc_taps)
# Split it up into pieces
channelizer = filter.pfb.channelizer_ccf(nchans, proto_taps, 2)
# Put the pieces back together again
syn_taps = [nchans*t for t in proto_taps]
synthesizer = filter.pfb_synthesizer_ccf(nchans, syn_taps, True)
src_snk = gr.vector_sink_c()
snk = gr.vector_sink_c()
# Remap the location of the channels
# Can be done in synth or channelizer (watch out for rotattions in
# the channelizer)
synthesizer.set_channel_map([ 0, 1, 2, 3, 4,
15, 16, 17, 18, 19])
tb = gr.top_block()
tb.connect(src, mod, chan, rrc, channelizer)
tb.connect(rrc, src_snk)
vsnk = []
for i in xrange(nchans):
tb.connect((channelizer,i), (synthesizer, i))
vsnk.append(gr.vector_sink_c())
tb.connect((channelizer,i), vsnk[i])
tb.connect(synthesizer, snk)
tb.run()
sin = scipy.array(src_snk.data()[1000:])
sout = scipy.array(snk.data()[1000:])
# Plot original signal
fs_in = nchans*fs
f1 = pylab.figure(1, figsize=(16,12), facecolor='w')
s11 = f1.add_subplot(2,2,1)
s11.psd(sin, NFFT=fftlen, Fs=fs_in)
s11.set_title("PSD of Original Signal")
s11.set_ylim([-200, -20])
s12 = f1.add_subplot(2,2,2)
s12.plot(sin.real[1000:1500], "o-b")
s12.plot(sin.imag[1000:1500], "o-r")
s12.set_title("Original Signal in Time")
start = 1
skip = 4
s13 = f1.add_subplot(2,2,3)
s13.plot(sin.real[start::skip], sin.imag[start::skip], "o")
s13.set_title("Constellation")
s13.set_xlim([-2, 2])
s13.set_ylim([-2, 2])
# Plot channels
nrows = int(scipy.sqrt(nchans))
ncols = int(scipy.ceil(float(nchans)/float(nrows)))
f2 = pylab.figure(2, figsize=(16,12), facecolor='w')
for n in xrange(nchans):
s = f2.add_subplot(nrows, ncols, n+1)
s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in)
s.set_title("Channel {0}".format(n))
s.set_ylim([-200, -20])
# Plot reconstructed signal
fs_out = 2*nchans*fs
f3 = pylab.figure(3, figsize=(16,12), facecolor='w')
s31 = f3.add_subplot(2,2,1)
s31.psd(sout, NFFT=fftlen, Fs=fs_out)
s31.set_title("PSD of Reconstructed Signal")
s31.set_ylim([-200, -20])
s32 = f3.add_subplot(2,2,2)
s32.plot(sout.real[1000:1500], "o-b")
s32.plot(sout.imag[1000:1500], "o-r")
s32.set_title("Reconstructed Signal in Time")
start = 2
skip = 4
s33 = f3.add_subplot(2,2,3)
s33.plot(sout.real[start::skip], sout.imag[start::skip], "o")
s33.set_title("Constellation")
s33.set_xlim([-2, 2])
s33.set_ylim([-2, 2])
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
|