summaryrefslogtreecommitdiff
path: root/gr-fft/lib/fft_vcc_fftw.cc
blob: ebcd5ec53f7e564107c6e93b1700aaa23dd08f61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/* -*- c++ -*- */
/*
 * Copyright 2004,2007,2008,2010,2012 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "fft_vcc_fftw.h"
#include <gr_io_signature.h>
#include <math.h>
#include <string.h>

namespace gr {
  namespace fft {
    
    fft_vcc::sptr fft_vcc::make(int fft_size, bool forward,
				const std::vector<float> &window,
				bool shift, int nthreads)
    {
      return gnuradio::get_initial_sptr(new fft_vcc_fftw
					(fft_size, forward, window,
					 shift, nthreads));
    }

    fft_vcc_fftw::fft_vcc_fftw(int fft_size, bool forward,
			       const std::vector<float> &window,
			       bool shift, int nthreads)
      : gr_sync_block("fft_vcc_fftw",
		      gr_make_io_signature(1, 1, fft_size * sizeof(gr_complex)),
		      gr_make_io_signature(1, 1, fft_size * sizeof(gr_complex))),
	d_fft_size(fft_size), d_forward(forward), d_shift(shift)
    {
      d_fft = new fft_complex(d_fft_size, forward, nthreads);
    }

    fft_vcc_fftw::~fft_vcc_fftw()
    {
      delete d_fft;
    }

    void
    fft_vcc_fftw::set_nthreads(int n)
    {
      d_fft->set_nthreads(n);
    }

    int
    fft_vcc_fftw::nthreads() const
    {
      return d_fft->nthreads();
    }

    bool
    fft_vcc_fftw::set_window(const std::vector<float> &window)
    {
      if(window.size()==0 || window.size()==d_fft_size) {
	d_window=window;
	return true;
      }
      else
	return false;
    }

    int
    fft_vcc_fftw::work(int noutput_items,
		       gr_vector_const_void_star &input_items,
		       gr_vector_void_star &output_items)
    {
      const gr_complex *in = (const gr_complex *) input_items[0];
      gr_complex *out = (gr_complex *) output_items[0];
      
      unsigned int input_data_size = input_signature()->sizeof_stream_item (0);
      unsigned int output_data_size = output_signature()->sizeof_stream_item (0);
      
      int count = 0;
      
      while(count++ < noutput_items) {
	
	// copy input into optimally aligned buffer
	if(d_window.size()) {
	  gr_complex *dst = d_fft->get_inbuf();
	  if(!d_forward && d_shift) {
	    unsigned int offset = (!d_forward && d_shift)?(d_fft_size/2):0;
	    int fft_m_offset = d_fft_size - offset;
	    for(unsigned int i = 0; i < offset; i++)		// apply window
	      dst[i+fft_m_offset] = in[i] * d_window[i];
	    for(unsigned int i = offset; i < d_fft_size; i++)	// apply window
	      dst[i-offset] = in[i] * d_window[i];
	  } 
	  else {
	    for(unsigned int i = 0; i < d_fft_size; i++)		// apply window
	      dst[i] = in[i] * d_window[i];
	  }
	}
	else {
	  if(!d_forward && d_shift) {  // apply an ifft shift on the data
	    gr_complex *dst = d_fft->get_inbuf();
	    unsigned int len = (unsigned int)(floor(d_fft_size/2.0)); // half length of complex array
	    memcpy(&dst[0], &in[len], sizeof(gr_complex)*(d_fft_size - len));
	    memcpy(&dst[d_fft_size - len], &in[0], sizeof(gr_complex)*len);
	  }
	  else {
	    memcpy(d_fft->get_inbuf(), in, input_data_size);
	  }
	}
	
	// compute the fft
	d_fft->execute();
	
	// copy result to our output
	if(d_forward && d_shift) {  // apply a fft shift on the data
	  unsigned int len = (unsigned int)(ceil(d_fft_size/2.0));
	  memcpy(&out[0], &d_fft->get_outbuf()[len], sizeof(gr_complex)*(d_fft_size - len));
	  memcpy(&out[d_fft_size - len], &d_fft->get_outbuf()[0], sizeof(gr_complex)*len);
	}
	else {
	  memcpy (out, d_fft->get_outbuf (), output_data_size);
	}
	
	in  += d_fft_size;
	out += d_fft_size;
      }
      
      return noutput_items;
    }

  } /* namespace fft */
} /* namespace gr */