1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/* -*- c++ -*- */
/*
* Copyright 2003,2008,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef _FFT_FFT_H_
#define _FFT_FFT_H_
/*
* Wrappers for FFTW single precision 1d dft
*/
#include <fft/api.h>
#include <gr_complex.h>
#include <boost/thread.hpp>
namespace gr {
namespace fft {
/*! \brief Helper function for allocating complex fft buffers
*/
FFT_API gr_complex* malloc_complex(int size);
/*! \brief Helper function for allocating float fft buffers
*/
FFT_API float* malloc_float(int size);
/*! \brief Helper function for freeing fft buffers
*/
FFT_API void free(void *b);
/*!
* \brief Export reference to planner mutex for those apps that
* want to use FFTW w/o using the fft_impl_fftw* classes.
*/
class FFT_API planner {
public:
typedef boost::mutex::scoped_lock scoped_lock;
/*!
* Return reference to planner mutex
*/
static boost::mutex &mutex();
};
/*!
* \brief FFT: complex in, complex out
* \ingroup misc
*/
class FFT_API fft_complex {
int d_fft_size;
int d_nthreads;
gr_complex *d_inbuf;
gr_complex *d_outbuf;
void *d_plan;
public:
fft_complex(int fft_size, bool forward = true, int nthreads=1);
virtual ~fft_complex();
/*
* These return pointers to buffers owned by fft_impl_fft_complex
* into which input and output take place. It's done this way in
* order to ensure optimal alignment for SIMD instructions.
*/
gr_complex *get_inbuf() const { return d_inbuf; }
gr_complex *get_outbuf() const { return d_outbuf; }
int inbuf_length() const { return d_fft_size; }
int outbuf_length() const { return d_fft_size; }
/*!
* Set the number of threads to use for caclulation.
*/
void set_nthreads(int n);
/*!
* Get the number of threads being used by FFTW
*/
int nthreads() const { return d_nthreads; }
/*!
* compute FFT. The input comes from inbuf, the output is placed in
* outbuf.
*/
void execute();
};
/*!
* \brief FFT: real in, complex out
* \ingroup misc
*/
class FFT_API fft_real_fwd {
int d_fft_size;
int d_nthreads;
float *d_inbuf;
gr_complex *d_outbuf;
void *d_plan;
public:
fft_real_fwd (int fft_size, int nthreads=1);
virtual ~fft_real_fwd ();
/*
* These return pointers to buffers owned by fft_impl_fft_real_fwd
* into which input and output take place. It's done this way in
* order to ensure optimal alignment for SIMD instructions.
*/
float *get_inbuf() const { return d_inbuf; }
gr_complex *get_outbuf() const { return d_outbuf; }
int inbuf_length() const { return d_fft_size; }
int outbuf_length() const { return d_fft_size / 2 + 1; }
/*!
* Set the number of threads to use for caclulation.
*/
void set_nthreads(int n);
/*!
* Get the number of threads being used by FFTW
*/
int nthreads() const { return d_nthreads; }
/*!
* compute FFT. The input comes from inbuf, the output is placed in
* outbuf.
*/
void execute();
};
/*!
* \brief FFT: complex in, float out
* \ingroup misc
*/
class FFT_API fft_real_rev {
int d_fft_size;
int d_nthreads;
gr_complex *d_inbuf;
float *d_outbuf;
void *d_plan;
public:
fft_real_rev(int fft_size, int nthreads=1);
virtual ~fft_real_rev();
/*
* These return pointers to buffers owned by fft_impl_fft_real_rev
* into which input and output take place. It's done this way in
* order to ensure optimal alignment for SIMD instructions.
*/
gr_complex *get_inbuf() const { return d_inbuf; }
float *get_outbuf() const { return d_outbuf; }
int inbuf_length() const { return d_fft_size / 2 + 1; }
int outbuf_length() const { return d_fft_size; }
/*!
* Set the number of threads to use for caclulation.
*/
void set_nthreads(int n);
/*!
* Get the number of threads being used by FFTW
*/
int nthreads() const { return d_nthreads; }
/*!
* compute FFT. The input comes from inbuf, the output is placed in
* outbuf.
*/
void execute();
};
} /* namespace fft */
} /*namespace gr */
#endif /* _FFT_FFT_H_ */
|