1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#!/usr/bin/env python
#
# Copyright 2011 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest
import digital_swig
import random, cmath
class test_mpsk_receiver(gr_unittest.TestCase):
def setUp (self):
self.tb = gr.top_block ()
def tearDown (self):
self.tb = None
def test01 (self):
# Test BPSK sync
M = 2
theta = 0
loop_bw = cmath.pi/100.0
fmin = -0.5
fmax = 0.5
mu = 0.25
gain_mu = 0.01
omega = 2
gain_omega = 0.001
omega_rel = 0.001
self.test = digital_swig.mpsk_receiver_cc(M, theta, loop_bw,
fmin, fmax, mu, gain_mu,
omega, gain_omega,
omega_rel)
data = 1000*[complex(1,0), complex(1,0), complex(-1,0), complex(-1,0)]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
expected_result = 1000*[complex(-0.5,0), complex(0.5,0)]
dst_data = self.snk.data()
# Only compare last Ncmp samples
Ncmp = 100
len_e = len(expected_result)
len_d = len(dst_data)
expected_result = expected_result[len_e - Ncmp:]
dst_data = dst_data[len_d - Ncmp:]
#for e,d in zip(expected_result, dst_data):
# print e, d
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 1)
def test02 (self):
# Test QPSK sync
M = 4
theta = 0
loop_bw = 2*cmath.pi/100.0
fmin = -0.5
fmax = 0.5
mu = 0.25
gain_mu = 0.01
omega = 2
gain_omega = 0.001
omega_rel = 0.001
self.test = digital_swig.mpsk_receiver_cc(M, theta, loop_bw,
fmin, fmax, mu, gain_mu,
omega, gain_omega,
omega_rel)
data = 1000*[complex( 0.707, 0.707), complex( 0.707, 0.707),
complex(-0.707, 0.707), complex(-0.707, 0.707),
complex(-0.707, -0.707), complex(-0.707, -0.707),
complex( 0.707, -0.707), complex( 0.707, -0.707)]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
expected_result = 1000*[complex(0, -1.0), complex(1.0, 0),
complex(0, 1.0), complex(-1.0, 0)]
dst_data = self.snk.data()
# Only compare last Ncmp samples
Ncmp = 100
len_e = len(expected_result)
len_d = len(dst_data)
expected_result = expected_result[len_e - Ncmp:]
dst_data = dst_data[len_d - Ncmp:]
#for e,d in zip(expected_result, dst_data):
# print e, d
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 1)
if __name__ == '__main__':
gr_unittest.run(test_mpsk_receiver, "test_mpsk_receiver.xml")
|