1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
#!/usr/bin/env python
#
# Copyright 2011 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest
import digital_swig
import random, math
class test_fll_band_edge_cc(gr_unittest.TestCase):
def setUp (self):
self.tb = gr.top_block ()
def tearDown (self):
self.tb = None
def test01 (self):
sps = 4
rolloff = 0.35
bw = 2*math.pi/100.0
ntaps = 45
# Create pulse shape filter
rrc_taps = gr.firdes.root_raised_cosine(
sps, sps, 1.0, rolloff, ntaps)
# The frequency offset to correct
foffset = 0.2 / (2.0*math.pi)
# Create a set of 1's and -1's, pulse shape and interpolate to sps
data = [2.0*random.randint(0, 2) - 1.0 for i in xrange(200)]
self.src = gr.vector_source_c(data, False)
self.rrc = gr.interp_fir_filter_ccf(sps, rrc_taps)
# Mix symbols with a complex sinusoid to spin them
self.nco = gr.sig_source_c(1, gr.GR_SIN_WAVE, foffset, 1)
self.mix = gr.multiply_cc()
# FLL will despin the symbols to an arbitrary phase
self.fll = digital_swig.fll_band_edge_cc(sps, rolloff, ntaps, bw)
# Create sinks for all outputs of the FLL
# we will only care about the freq and error outputs
self.vsnk_frq = gr.vector_sink_f()
self.nsnk_fll = gr.null_sink(gr.sizeof_gr_complex)
self.nsnk_phs = gr.null_sink(gr.sizeof_float)
self.nsnk_err = gr.null_sink(gr.sizeof_float)
# Connect the blocks
self.tb.connect(self.nco, (self.mix,1))
self.tb.connect(self.src, self.rrc, (self.mix,0))
self.tb.connect(self.mix, self.fll, self.nsnk_fll)
self.tb.connect((self.fll,1), self.vsnk_frq)
self.tb.connect((self.fll,2), self.nsnk_phs)
self.tb.connect((self.fll,3), self.nsnk_err)
self.tb.run()
N = 700
dst_data = self.vsnk_frq.data()[N:]
expected_result = len(dst_data)* [-0.20,]
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 4)
if __name__ == '__main__':
gr_unittest.run(test_fll_band_edge_cc, "test_fll_band_edge_cc.xml")
|