summaryrefslogtreecommitdiff
path: root/gr-digital/python/qa_costas_loop_cc.py
blob: 4645347237a048909e7823ef5dfbe057d3f98493 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
#
# Copyright 2011 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

from gnuradio import gr, blks2, gr_unittest
import digital_swig
import random, cmath

class test_digital(gr_unittest.TestCase):

    def setUp (self):
        self.tb = gr.top_block ()

    def tearDown (self):
        self.tb = None

    def test01 (self):
        # test basic functionality by setting all gains to 0
        alpha = beta = max_freq = min_freq = 0.0
        order = 2
        self.test = digital_swig.costas_loop_cc(alpha, beta,
                                                max_freq, min_freq, 
                                                order)
        data = 100*[complex(1,0),]
        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()
        
        expected_result = data
        dst_data = self.snk.data()
        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)

    def test02 (self):
        # Make sure it doesn't diverge given perfect data
        alpha = 0.1
        beta = 0.25*alpha*alpha
        max_freq = 0.25
        min_freq = -0.25
        order = 2
        self.test = digital_swig.costas_loop_cc(alpha, beta,
                                                max_freq, min_freq, 
                                                order)
        data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        expected_result = data
        dst_data = self.snk.data()

        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)

    def test03 (self):
        # BPSK Convergence test with static rotation
        alpha = 0.25
        beta = 0.25*alpha*alpha
        max_freq = 0.25
        min_freq = -0.25
        order = 2
        self.test = digital_swig.costas_loop_cc(alpha, beta,
                                                max_freq, min_freq, 
                                                order)
        rot = cmath.exp(0.2j) # some small rotation
        data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
        
        N = 40 # settling time
        expected_result = data[N:]
        data = [rot*d for d in data]

        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        dst_data = self.snk.data()[N:]
        
        # generously compare results; the loop will converge near to, but
        # not exactly on, the target data
        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)

    def test04 (self):
        # QPSK Convergence test with static rotation
        alpha = 0.25
        beta = 0.25*alpha*alpha
        max_freq = 0.25
        min_freq = -0.25
        order = 4
        self.test = digital_swig.costas_loop_cc(alpha, beta,
                                                max_freq, min_freq, 
                                                order)
        rot = cmath.exp(0.2j) # some small rotation
        data = [complex(2*random.randint(0,1)-1, 2*random.randint(0,1)-1)
                for i in xrange(100)]
        
        N = 40 # settling time
        expected_result = data[N:]
        data = [rot*d for d in data]

        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        dst_data = self.snk.data()[N:]

        # generously compare results; the loop will converge near to, but
        # not exactly on, the target data
        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)

    def test05 (self):
        # 8PSK Convergence test with static rotation
        alpha = 0.25
        beta = 0.25*alpha*alpha
        max_freq = 0.25
        min_freq = -0.25
        order = 8
        self.test = digital_swig.costas_loop_cc(alpha, beta,
                                                max_freq, min_freq, 
                                                order)
        rot = cmath.exp(cmath.pi/16.0j) # some small rotation
        const = blks2.psk.make_constellation(order)
        data = [random.randint(0,7) for i in xrange(100)]
        data = [rot*const[d] for d in data]
        
        N = 40 # settling time
        expected_result = data[N:]
        data = [rot*d for d in data]

        self.src = gr.vector_source_c(data, False)
        self.snk = gr.vector_sink_c()

        self.tb.connect(self.src, self.test, self.snk)
        self.tb.run()

        dst_data = self.snk.data()[N:]

        print expected_result
        print dst_data
        
        # generously compare results; the loop will converge near to, but
        # not exactly on, the target data
        self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)

if __name__ == '__main__':
    gr_unittest.run(test_digital, "test_digital.xml")