1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
#!/usr/bin/env python
#
# Copyright 2011 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gr_unittest
import digital_swig, psk2
import random, cmath
class test_costas_loop_cc(gr_unittest.TestCase):
def setUp (self):
self.tb = gr.top_block ()
def tearDown (self):
self.tb = None
def test01 (self):
# test basic functionality by setting all gains to 0
natfreq = 0.0
order = 2
self.test = digital_swig.costas_loop_cc(natfreq, order)
data = 100*[complex(1,0),]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
expected_result = data
dst_data = self.snk.data()
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)
def test02 (self):
# Make sure it doesn't diverge given perfect data
natfreq = 0.25
order = 2
self.test = digital_swig.costas_loop_cc(natfreq, order)
data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
expected_result = data
dst_data = self.snk.data()
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 5)
def test03 (self):
# BPSK Convergence test with static rotation
natfreq = 0.25
order = 2
self.test = digital_swig.costas_loop_cc(natfreq, order)
rot = cmath.exp(0.2j) # some small rotation
data = [complex(2*random.randint(0,1)-1, 0) for i in xrange(100)]
N = 40 # settling time
expected_result = data[N:]
data = [rot*d for d in data]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
dst_data = self.snk.data()[N:]
# generously compare results; the loop will converge near to, but
# not exactly on, the target data
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
def test04 (self):
# QPSK Convergence test with static rotation
natfreq = 0.25
order = 4
self.test = digital_swig.costas_loop_cc(natfreq, order)
rot = cmath.exp(0.2j) # some small rotation
data = [complex(2*random.randint(0,1)-1, 2*random.randint(0,1)-1)
for i in xrange(100)]
N = 40 # settling time
expected_result = data[N:]
data = [rot*d for d in data]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
dst_data = self.snk.data()[N:]
# generously compare results; the loop will converge near to, but
# not exactly on, the target data
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
def test05 (self):
# 8PSK Convergence test with static rotation
natfreq = 0.25
order = 8
self.test = digital_swig.costas_loop_cc(natfreq, order)
rot = cmath.exp(-cmath.pi/8.0j) # rotate to match Costas rotation
const = psk2.psk_constellation(order)
data = [random.randint(0,7) for i in xrange(100)]
data = [2*rot*const.points()[d] for d in data]
N = 40 # settling time
expected_result = data[N:]
rot = cmath.exp(0.1j) # some small rotation
data = [rot*d for d in data]
self.src = gr.vector_source_c(data, False)
self.snk = gr.vector_sink_c()
self.tb.connect(self.src, self.test, self.snk)
self.tb.run()
dst_data = self.snk.data()[N:]
# generously compare results; the loop will converge near to, but
# not exactly on, the target data
self.assertComplexTuplesAlmostEqual (expected_result, dst_data, 2)
if __name__ == '__main__':
gr_unittest.run(test_costas_loop_cc, "test_costas_loop_cc.xml")
|