1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#!/usr/bin/env python
#
# Copyright 2007,2008 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import math
from gnuradio import gr
class ofdm_sync_ml(gr.hier_block2):
def __init__(self, fft_length, cp_length, snr, kstime, logging):
''' Maximum Likelihood OFDM synchronizer:
J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
of Time and Frequency Offset in OFDM Systems," IEEE Trans.
Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
'''
gr.hier_block2.__init__(self, "ofdm_sync_ml",
gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature
self.input = gr.add_const_cc(0)
SNR = 10.0**(snr/10.0)
rho = SNR / (SNR + 1.0)
symbol_length = fft_length + cp_length
# ML Sync
# Energy Detection from ML Sync
self.connect(self, self.input)
# Create a delay line
self.delay = gr.delay(gr.sizeof_gr_complex, fft_length)
self.connect(self.input, self.delay)
# magnitude squared blocks
self.magsqrd1 = gr.complex_to_mag_squared()
self.magsqrd2 = gr.complex_to_mag_squared()
self.adder = gr.add_ff()
moving_sum_taps = [rho/2 for i in range(cp_length)]
self.moving_sum_filter = gr.fir_filter_fff(1,moving_sum_taps)
self.connect(self.input,self.magsqrd1)
self.connect(self.delay,self.magsqrd2)
self.connect(self.magsqrd1,(self.adder,0))
self.connect(self.magsqrd2,(self.adder,1))
self.connect(self.adder,self.moving_sum_filter)
# Correlation from ML Sync
self.conjg = gr.conjugate_cc();
self.mixer = gr.multiply_cc();
movingsum2_taps = [1.0 for i in range(cp_length)]
self.movingsum2 = gr.fir_filter_ccf(1,movingsum2_taps)
# Correlator data handler
self.c2mag = gr.complex_to_mag()
self.angle = gr.complex_to_arg()
self.connect(self.input,(self.mixer,1))
self.connect(self.delay,self.conjg,(self.mixer,0))
self.connect(self.mixer,self.movingsum2,self.c2mag)
self.connect(self.movingsum2,self.angle)
# ML Sync output arg, need to find maximum point of this
self.diff = gr.sub_ff()
self.connect(self.c2mag,(self.diff,0))
self.connect(self.moving_sum_filter,(self.diff,1))
#ML measurements input to sampler block and detect
self.f2c = gr.float_to_complex()
self.pk_detect = gr.peak_detector_fb(0.2, 0.25, 30, 0.0005)
self.sample_and_hold = gr.sample_and_hold_ff()
# use the sync loop values to set the sampler and the NCO
# self.diff = theta
# self.angle = epsilon
self.connect(self.diff, self.pk_detect)
# The DPLL corrects for timing differences between CP correlations
use_dpll = 0
if use_dpll:
self.dpll = gr.dpll_bb(float(symbol_length),0.01)
self.connect(self.pk_detect, self.dpll)
self.connect(self.dpll, (self.sample_and_hold,1))
else:
self.connect(self.pk_detect, (self.sample_and_hold,1))
self.connect(self.angle, (self.sample_and_hold,0))
################################
# correlate against known symbol
# This gives us the same timing signal as the PN sync block only on the preamble
# we don't use the signal generated from the CP correlation because we don't want
# to readjust the timing in the middle of the packet or we ruin the equalizer settings.
kstime = [k.conjugate() for k in kstime]
kstime.reverse()
self.kscorr = gr.fir_filter_ccc(1, kstime)
self.corrmag = gr.complex_to_mag_squared()
self.div = gr.divide_ff()
# The output signature of the correlation has a few spikes because the rest of the
# system uses the repeated preamble symbol. It needs to work that generically if
# anyone wants to use this against a WiMAX-like signal since it, too, repeats.
# The output theta of the correlator above is multiplied with this correlation to
# identify the proper peak and remove other products in this cross-correlation
self.threshold_factor = 0.1
self.slice = gr.threshold_ff(self.threshold_factor, self.threshold_factor, 0)
self.f2b = gr.float_to_char()
self.b2f = gr.char_to_float()
self.mul = gr.multiply_ff()
# Normalize the power of the corr output by the energy. This is not really needed
# and could be removed for performance, but it makes for a cleaner signal.
# if this is removed, the threshold value needs adjustment.
self.connect(self.input, self.kscorr, self.corrmag, (self.div,0))
self.connect(self.moving_sum_filter, (self.div,1))
self.connect(self.div, (self.mul,0))
self.connect(self.pk_detect, self.b2f, (self.mul,1))
self.connect(self.mul, self.slice)
# Set output signals
# Output 0: fine frequency correction value
# Output 1: timing signal
self.connect(self.sample_and_hold, (self,0))
self.connect(self.slice, self.f2b, (self,1))
if logging:
self.connect(self.moving_sum_filter, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-energy_f.dat"))
self.connect(self.diff, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-theta_f.dat"))
self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-epsilon_f.dat"))
self.connect(self.corrmag, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-corrmag_f.dat"))
self.connect(self.kscorr, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-kscorr_c.dat"))
self.connect(self.div, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-div_f.dat"))
self.connect(self.mul, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-mul_f.dat"))
self.connect(self.slice, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-slice_f.dat"))
self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-peaks_b.dat"))
if use_dpll:
self.connect(self.dpll, gr.file_sink(gr.sizeof_char, "ofdm_sync_ml-dpll_b.dat"))
self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_ml-sample_and_hold_f.dat"))
self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-input_c.dat"))
|