1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* -*- c++ -*- */
/*
* Copyright 2006-2008,2010,2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <digital_ofdm_frame_acquisition.h>
#include <gr_io_signature.h>
#include <gr_expj.h>
#include <gr_math.h>
#include <cstdio>
#define VERBOSE 0
#define M_TWOPI (2*M_PI)
#define MAX_NUM_SYMBOLS 1000
digital_ofdm_frame_acquisition_sptr
digital_make_ofdm_frame_acquisition (unsigned int occupied_carriers,
unsigned int fft_length,
unsigned int cplen,
const std::vector<gr_complex> &known_symbol,
unsigned int max_fft_shift_len)
{
return gnuradio::get_initial_sptr(new digital_ofdm_frame_acquisition (occupied_carriers, fft_length, cplen,
known_symbol, max_fft_shift_len));
}
digital_ofdm_frame_acquisition::digital_ofdm_frame_acquisition (unsigned occupied_carriers,
unsigned int fft_length,
unsigned int cplen,
const std::vector<gr_complex> &known_symbol,
unsigned int max_fft_shift_len)
: gr_block ("ofdm_frame_acquisition",
gr_make_io_signature2 (2, 2, sizeof(gr_complex)*fft_length, sizeof(char)*fft_length),
gr_make_io_signature2 (2, 2, sizeof(gr_complex)*occupied_carriers, sizeof(char))),
d_occupied_carriers(occupied_carriers),
d_fft_length(fft_length),
d_cplen(cplen),
d_freq_shift_len(max_fft_shift_len),
d_known_symbol(known_symbol),
d_coarse_freq(0),
d_phase_count(0)
{
d_symbol_phase_diff.resize(d_fft_length);
d_known_phase_diff.resize(d_occupied_carriers);
d_hestimate.resize(d_occupied_carriers);
unsigned int i = 0, j = 0;
std::fill(d_known_phase_diff.begin(), d_known_phase_diff.end(), 0);
for(i = 0; i < d_known_symbol.size()-2; i+=2) {
d_known_phase_diff[i] = norm(d_known_symbol[i] - d_known_symbol[i+2]);
}
d_phase_lut = new gr_complex[(2*d_freq_shift_len+1) * MAX_NUM_SYMBOLS];
for(i = 0; i <= 2*d_freq_shift_len; i++) {
for(j = 0; j < MAX_NUM_SYMBOLS; j++) {
d_phase_lut[j + i*MAX_NUM_SYMBOLS] = gr_expj(-M_TWOPI*d_cplen/d_fft_length*(i-d_freq_shift_len)*j);
}
}
}
digital_ofdm_frame_acquisition::~digital_ofdm_frame_acquisition(void)
{
delete [] d_phase_lut;
}
void
digital_ofdm_frame_acquisition::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
unsigned ninputs = ninput_items_required.size ();
for (unsigned i = 0; i < ninputs; i++)
ninput_items_required[i] = 1;
}
gr_complex
digital_ofdm_frame_acquisition::coarse_freq_comp(int freq_delta, int symbol_count)
{
// return gr_complex(cos(-M_TWOPI*freq_delta*d_cplen/d_fft_length*symbol_count),
// sin(-M_TWOPI*freq_delta*d_cplen/d_fft_length*symbol_count));
return gr_expj(-M_TWOPI*freq_delta*d_cplen/d_fft_length*symbol_count);
//return d_phase_lut[MAX_NUM_SYMBOLS * (d_freq_shift_len + freq_delta) + symbol_count];
}
void
digital_ofdm_frame_acquisition::correlate(const gr_complex *symbol, int zeros_on_left)
{
unsigned int i,j;
std::fill(d_symbol_phase_diff.begin(), d_symbol_phase_diff.end(), 0);
for(i = 0; i < d_fft_length-2; i++) {
d_symbol_phase_diff[i] = norm(symbol[i] - symbol[i+2]);
}
// sweep through all possible/allowed frequency offsets and select the best
int index = 0;
float max = 0, sum=0;
for(i = zeros_on_left - d_freq_shift_len; i < zeros_on_left + d_freq_shift_len; i++) {
sum = 0;
for(j = 0; j < d_occupied_carriers; j++) {
sum += (d_known_phase_diff[j] * d_symbol_phase_diff[i+j]);
}
if(sum > max) {
max = sum;
index = i;
}
}
// set the coarse frequency offset relative to the edge of the occupied tones
d_coarse_freq = index - zeros_on_left;
}
void
digital_ofdm_frame_acquisition::calculate_equalizer(const gr_complex *symbol, int zeros_on_left)
{
unsigned int i=0;
// Set first tap of equalizer
d_hestimate[0] = d_known_symbol[0] /
(coarse_freq_comp(d_coarse_freq,1)*symbol[zeros_on_left+d_coarse_freq]);
// set every even tap based on known symbol
// linearly interpolate between set carriers to set zero-filled carriers
// FIXME: is this the best way to set this?
for(i = 2; i < d_occupied_carriers; i+=2) {
d_hestimate[i] = d_known_symbol[i] /
(coarse_freq_comp(d_coarse_freq,1)*(symbol[i+zeros_on_left+d_coarse_freq]));
d_hestimate[i-1] = (d_hestimate[i] + d_hestimate[i-2]) / gr_complex(2.0, 0.0);
}
// with even number of carriers; last equalizer tap is wrong
if(!(d_occupied_carriers & 1)) {
d_hestimate[d_occupied_carriers-1] = d_hestimate[d_occupied_carriers-2];
}
if(VERBOSE) {
fprintf(stderr, "Equalizer setting:\n");
for(i = 0; i < d_occupied_carriers; i++) {
gr_complex sym = coarse_freq_comp(d_coarse_freq,1)*symbol[i+zeros_on_left+d_coarse_freq];
gr_complex output = sym * d_hestimate[i];
fprintf(stderr, "sym: %+.4f + j%+.4f ks: %+.4f + j%+.4f eq: %+.4f + j%+.4f ==> %+.4f + j%+.4f\n",
sym .real(), sym.imag(),
d_known_symbol[i].real(), d_known_symbol[i].imag(),
d_hestimate[i].real(), d_hestimate[i].imag(),
output.real(), output.imag());
}
fprintf(stderr, "\n");
}
}
int
digital_ofdm_frame_acquisition::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *symbol = (const gr_complex *)input_items[0];
const char *signal_in = (const char *)input_items[1];
gr_complex *out = (gr_complex *) output_items[0];
char *signal_out = (char *) output_items[1];
int unoccupied_carriers = d_fft_length - d_occupied_carriers;
int zeros_on_left = (int)ceil(unoccupied_carriers/2.0);
if(signal_in[0]) {
d_phase_count = 1;
correlate(symbol, zeros_on_left);
calculate_equalizer(symbol, zeros_on_left);
signal_out[0] = 1;
}
else {
signal_out[0] = 0;
}
for(unsigned int i = 0; i < d_occupied_carriers; i++) {
out[i] = d_hestimate[i]*coarse_freq_comp(d_coarse_freq,d_phase_count)
*symbol[i+zeros_on_left+d_coarse_freq];
}
d_phase_count++;
if(d_phase_count == MAX_NUM_SYMBOLS) {
d_phase_count = 1;
}
consume_each(1);
return 1;
}
|