1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
/* -*- c++ -*- */
/*
* Copyright 2005,2006,2007,2010,2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gr_io_signature.h>
#include <gr_prefs.h>
#include <digital_mpsk_receiver_cc.h>
#include <stdexcept>
#include <gr_math.h>
#include <gr_expj.h>
#include <gri_mmse_fir_interpolator_cc.h>
#define M_TWOPI (2*M_PI)
#define VERBOSE_MM 0 // Used for debugging symbol timing loop
#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking
// Public constructor
digital_mpsk_receiver_cc_sptr
digital_make_mpsk_receiver_cc(unsigned int M, float theta,
float loop_bw,
float fmin, float fmax,
float mu, float gain_mu,
float omega, float gain_omega, float omega_rel)
{
return gnuradio::get_initial_sptr(new digital_mpsk_receiver_cc (M, theta,
loop_bw,
fmin, fmax,
mu, gain_mu,
omega, gain_omega,
omega_rel));
}
digital_mpsk_receiver_cc::digital_mpsk_receiver_cc (unsigned int M, float theta,
float loop_bw,
float fmin, float fmax,
float mu, float gain_mu,
float omega, float gain_omega,
float omega_rel)
: gr_block ("mpsk_receiver_cc",
gr_make_io_signature (1, 1, sizeof (gr_complex)),
gr_make_io_signature (1, 1, sizeof (gr_complex))),
gri_control_loop(loop_bw, fmax, fmin),
d_M(M), d_theta(theta),
d_current_const_point(0),
d_mu(mu), d_gain_mu(gain_mu), d_gain_omega(gain_omega),
d_omega_rel(omega_rel), d_max_omega(0), d_min_omega(0),
d_p_2T(0), d_p_1T(0), d_p_0T(0), d_c_2T(0), d_c_1T(0), d_c_0T(0)
{
d_interp = new gri_mmse_fir_interpolator_cc();
d_dl_idx = 0;
set_omega(omega);
if (omega <= 0.0)
throw std::out_of_range ("clock rate must be > 0");
if (gain_mu < 0 || gain_omega < 0)
throw std::out_of_range ("Gains must be non-negative");
assert(d_interp->ntaps() <= DLLEN);
// zero double length delay line.
for (unsigned int i = 0; i < 2 * DLLEN; i++)
d_dl[i] = gr_complex(0.0,0.0);
// build the constellation vector from M
make_constellation();
// Select a phase detector and a decision maker for the modulation order
switch(d_M) {
case 2: // optimized algorithms for BPSK
d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_bpsk; //bpsk;
d_decision = &digital_mpsk_receiver_cc::decision_bpsk;
break;
case 4: // optimized algorithms for QPSK
d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_qpsk; //qpsk;
d_decision = &digital_mpsk_receiver_cc::decision_qpsk;
break;
default: // generic algorithms for any M (power of 2?) but not pretty
d_phase_error_detector = &digital_mpsk_receiver_cc::phase_error_detector_generic;
d_decision = &digital_mpsk_receiver_cc::decision_generic;
break;
}
}
digital_mpsk_receiver_cc::~digital_mpsk_receiver_cc ()
{
delete d_interp;
}
void
digital_mpsk_receiver_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required)
{
unsigned ninputs = ninput_items_required.size();
for (unsigned i=0; i < ninputs; i++)
ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps());
}
// FIXME add these back in an test difference in performance
float
digital_mpsk_receiver_cc::phase_error_detector_qpsk(gr_complex sample) const
{
float phase_error = 0;
if(fabsf(sample.real()) > fabsf(sample.imag())) {
if(sample.real() > 0)
phase_error = -sample.imag();
else
phase_error = sample.imag();
}
else {
if(sample.imag() > 0)
phase_error = sample.real();
else
phase_error = -sample.real();
}
return phase_error;
}
float
digital_mpsk_receiver_cc::phase_error_detector_bpsk(gr_complex sample) const
{
return -(sample.real()*sample.imag());
}
float digital_mpsk_receiver_cc::phase_error_detector_generic(gr_complex sample) const
{
//return gr_fast_atan2f(sample*conj(d_constellation[d_current_const_point]));
return -arg(sample*conj(d_constellation[d_current_const_point]));
}
unsigned int
digital_mpsk_receiver_cc::decision_bpsk(gr_complex sample) const
{
return (gr_branchless_binary_slicer(sample.real()) ^ 1);
//return gr_binary_slicer(sample.real()) ^ 1;
}
unsigned int
digital_mpsk_receiver_cc::decision_qpsk(gr_complex sample) const
{
unsigned int index;
//index = gr_branchless_quad_0deg_slicer(sample);
index = gr_quad_0deg_slicer(sample);
return index;
}
unsigned int
digital_mpsk_receiver_cc::decision_generic(gr_complex sample) const
{
unsigned int min_m = 0;
float min_s = 65535;
// Develop all possible constellation points and find the one that minimizes
// the Euclidean distance (error) with the sample
for(unsigned int m=0; m < d_M; m++) {
gr_complex diff = norm(d_constellation[m] - sample);
if(fabs(diff.real()) < min_s) {
min_s = fabs(diff.real());
min_m = m;
}
}
// Return the index of the constellation point that minimizes the error
return min_m;
}
void
digital_mpsk_receiver_cc::make_constellation()
{
for(unsigned int m=0; m < d_M; m++) {
d_constellation.push_back(gr_expj((M_TWOPI/d_M)*m));
}
}
void
digital_mpsk_receiver_cc::mm_sampler(const gr_complex symbol)
{
gr_complex sample, nco;
d_mu--; // skip a number of symbols between sampling
d_phase += d_freq; // increment the phase based on the frequency of the rotation
// Keep phase clamped and not walk to infinity
while(d_phase > M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase < -M_TWOPI)
d_phase += M_TWOPI;
nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the current sample
sample = nco*symbol; // get the downconverted symbol
// Fill up the delay line for the interpolator
d_dl[d_dl_idx] = sample;
d_dl[(d_dl_idx + DLLEN)] = sample; // put this in the second half of the buffer for overflows
d_dl_idx = (d_dl_idx+1) % DLLEN; // Keep the delay line index in bounds
}
void
digital_mpsk_receiver_cc::mm_error_tracking(gr_complex sample)
{
gr_complex u, x, y;
float mm_error = 0;
// Make sample timing corrections
// set the delayed samples
d_p_2T = d_p_1T;
d_p_1T = d_p_0T;
d_p_0T = sample;
d_c_2T = d_c_1T;
d_c_1T = d_c_0T;
d_current_const_point = (*this.*d_decision)(d_p_0T); // make a decision on the sample value
d_c_0T = d_constellation[d_current_const_point];
x = (d_c_0T - d_c_2T) * conj(d_p_1T);
y = (d_p_0T - d_p_2T) * conj(d_c_1T);
u = y - x;
mm_error = u.real(); // the error signal is in the real part
mm_error = gr_branchless_clip(mm_error, 1.0); // limit mm_val
d_omega = d_omega + d_gain_omega * mm_error; // update omega based on loop error
d_omega = d_omega_mid + gr_branchless_clip(d_omega-d_omega_mid, d_omega_rel); // make sure we don't walk away
d_mu += d_omega + d_gain_mu * mm_error; // update mu based on loop error
#if VERBOSE_MM
printf("mm: mu: %f omega: %f mm_error: %f sample: %f+j%f constellation: %f+j%f\n",
d_mu, d_omega, mm_error, sample.real(), sample.imag(),
d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag());
#endif
}
void
digital_mpsk_receiver_cc::phase_error_tracking(gr_complex sample)
{
float phase_error = 0;
// Make phase and frequency corrections based on sampled value
phase_error = (*this.*d_phase_error_detector)(sample);
advance_loop(phase_error);
phase_wrap();
frequency_limit();
#if VERBOSE_COSTAS
printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n",
phase_error, d_phase, d_freq, sample.real(), sample.imag(),
d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag());
#endif
}
int
digital_mpsk_receiver_cc::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
int i=0, o=0;
while((o < noutput_items) && (i < ninput_items[0])) {
while((d_mu > 1) && (i < ninput_items[0])) {
mm_sampler(in[i]); // puts symbols into a buffer and adjusts d_mu
i++;
}
if(i < ninput_items[0]) {
gr_complex interp_sample = d_interp->interpolate(&d_dl[d_dl_idx], d_mu);
mm_error_tracking(interp_sample); // corrects M&M sample time
phase_error_tracking(interp_sample); // corrects phase and frequency offsets
out[o++] = interp_sample;
}
}
#if 0
printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n",
ninput_items[0], noutput_items, i, o);
#endif
consume_each(i);
return o;
}
|