1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/* -*- c++ -*- */
/*
* Copyright 2009-2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <digital_fll_band_edge_cc.h>
#include <gr_io_signature.h>
#include <gr_expj.h>
#include <cstdio>
#define M_TWOPI (2*M_PI)
float sinc(float x)
{
if(x == 0)
return 1;
else
return sin(M_PI*x)/(M_PI*x);
}
digital_fll_band_edge_cc_sptr
digital_make_fll_band_edge_cc (float samps_per_sym, float rolloff,
int filter_size, float bandwidth)
{
return gnuradio::get_initial_sptr(new digital_fll_band_edge_cc (samps_per_sym, rolloff,
filter_size, bandwidth));
}
static int ios[] = {sizeof(gr_complex), sizeof(float), sizeof(float), sizeof(float)};
static std::vector<int> iosig(ios, ios+sizeof(ios)/sizeof(int));
digital_fll_band_edge_cc::digital_fll_band_edge_cc (float samps_per_sym, float rolloff,
int filter_size, float bandwidth)
: gr_sync_block ("fll_band_edge_cc",
gr_make_io_signature (1, 1, sizeof(gr_complex)),
gr_make_io_signaturev (1, 4, iosig)),
gri_control_loop(bandwidth, M_TWOPI*(2.0/samps_per_sym), -M_TWOPI*(2.0/samps_per_sym)),
d_updated (false)
{
// Initialize samples per symbol
if(samps_per_sym <= 0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid number of sps. Must be > 0.");
}
d_sps = samps_per_sym;
// Initialize rolloff factor
if(rolloff < 0 || rolloff > 1.0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid rolloff factor. Must be in [0,1].");
}
d_rolloff = rolloff;
// Initialize filter length
if(filter_size <= 0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid filter size. Must be > 0.");
}
d_filter_size = filter_size;
// Build the band edge filters
design_filter(d_sps, d_rolloff, d_filter_size);
}
digital_fll_band_edge_cc::~digital_fll_band_edge_cc ()
{
}
/*******************************************************************
SET FUNCTIONS
*******************************************************************/
void
digital_fll_band_edge_cc::set_samples_per_symbol(float sps)
{
if(sps <= 0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid number of sps. Must be > 0.");
}
d_sps = sps;
design_filter(d_sps, d_rolloff, d_filter_size);
}
void
digital_fll_band_edge_cc::set_rolloff(float rolloff)
{
if(rolloff < 0 || rolloff > 1.0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid rolloff factor. Must be in [0,1].");
}
d_rolloff = rolloff;
design_filter(d_sps, d_rolloff, d_filter_size);
}
void
digital_fll_band_edge_cc::set_filter_size(int filter_size)
{
if(filter_size <= 0) {
throw std::out_of_range ("digital_fll_band_edge_cc: invalid filter size. Must be > 0.");
}
d_filter_size = filter_size;
design_filter(d_sps, d_rolloff, d_filter_size);
}
/*******************************************************************
GET FUNCTIONS
*******************************************************************/
float
digital_fll_band_edge_cc::get_samples_per_symbol() const
{
return d_sps;
}
float
digital_fll_band_edge_cc::get_rolloff() const
{
return d_rolloff;
}
int
digital_fll_band_edge_cc:: get_filter_size() const
{
return d_filter_size;
}
/*******************************************************************
*******************************************************************/
void
digital_fll_band_edge_cc::design_filter(float samps_per_sym,
float rolloff, int filter_size)
{
int M = rint(filter_size / samps_per_sym);
float power = 0;
// Create the baseband filter by adding two sincs together
std::vector<float> bb_taps;
for(int i = 0; i < filter_size; i++) {
float k = -M + i*2.0/samps_per_sym;
float tap = sinc(rolloff*k - 0.5) + sinc(rolloff*k + 0.5);
power += tap;
bb_taps.push_back(tap);
}
d_taps_lower.resize(filter_size);
d_taps_upper.resize(filter_size);
// Create the band edge filters by spinning the baseband
// filter up and down to the right places in frequency.
// Also, normalize the power in the filters
int N = (bb_taps.size() - 1.0)/2.0;
for(int i = 0; i < filter_size; i++) {
float tap = bb_taps[i] / power;
float k = (-N + (int)i)/(2.0*samps_per_sym);
gr_complex t1 = tap * gr_expj(-M_TWOPI*(1+rolloff)*k);
gr_complex t2 = tap * gr_expj(M_TWOPI*(1+rolloff)*k);
d_taps_lower[filter_size-i-1] = t1;
d_taps_upper[filter_size-i-1] = t2;
}
d_updated = true;
// Set the history to ensure enough input items for each filter
set_history(filter_size+1);
}
void
digital_fll_band_edge_cc::print_taps()
{
unsigned int i;
printf("Upper Band-edge: [");
for(i = 0; i < d_taps_upper.size(); i++) {
printf(" %.4e + %.4ej,", d_taps_upper[i].real(), d_taps_upper[i].imag());
}
printf("]\n\n");
printf("Lower Band-edge: [");
for(i = 0; i < d_taps_lower.size(); i++) {
printf(" %.4e + %.4ej,", d_taps_lower[i].real(), d_taps_lower[i].imag());
}
printf("]\n\n");
}
int
digital_fll_band_edge_cc::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
float *frq = NULL;
float *phs = NULL;
float *err = NULL;
if(output_items.size() == 4) {
frq = (float *) output_items[1];
phs = (float *) output_items[2];
err = (float *) output_items[3];
}
if (d_updated) {
d_updated = false;
return 0; // history requirements may have changed.
}
int i;
float error;
gr_complex nco_out;
gr_complex out_upper, out_lower;
for(i = 0; i < noutput_items; i++) {
nco_out = gr_expj(d_phase);
out[i+d_filter_size-1] = in[i] * nco_out;
// Perform the dot product of the output with the filters
out_upper = 0;
out_lower = 0;
for(int k = 0; k < d_filter_size; k++) {
out_upper += d_taps_upper[k] * out[i+k];
out_lower += d_taps_lower[k] * out[i+k];
}
error = norm(out_lower) - norm(out_upper);
advance_loop(error);
phase_wrap();
frequency_limit();
if(output_items.size() == 4) {
frq[i] = d_freq;
phs[i] = d_phase;
err[i] = error;
}
}
return noutput_items;
}
|