1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/* -*- c++ -*- */
/*
* Copyright 2006,2010,2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <digital_costas_loop_cc.h>
#include <gr_io_signature.h>
#include <gr_expj.h>
#include <gr_sincos.h>
#include <gr_math.h>
#define M_TWOPI (2*M_PI)
digital_costas_loop_cc_sptr
digital_make_costas_loop_cc (float loop_bw, int order
) throw (std::invalid_argument)
{
return gnuradio::get_initial_sptr(new digital_costas_loop_cc
(loop_bw, order));
}
digital_costas_loop_cc::digital_costas_loop_cc (float loop_bw, int order
) throw (std::invalid_argument)
: gr_sync_block ("costas_loop_cc",
gr_make_io_signature (1, 1, sizeof (gr_complex)),
gr_make_io_signature2 (1, 2, sizeof (gr_complex), sizeof(float))),
d_max_freq(1.0), d_min_freq(-1.0),
d_loop_bw(loop_bw),
d_order(order), d_phase_detector(NULL)
{
// Set the damping factor for a critically damped system
d_damping = sqrtf(2.0f)/2.0f;
// Set the bandwidth, which will then call update_gains()
set_loop_bandwidth(loop_bw);
// Set up the phase detector to use based on the constellation order
switch(d_order) {
case 2:
d_phase_detector = &digital_costas_loop_cc::phase_detector_2;
break;
case 4:
d_phase_detector = &digital_costas_loop_cc::phase_detector_4;
break;
case 8:
d_phase_detector = &digital_costas_loop_cc::phase_detector_8;
break;
default:
throw std::invalid_argument("order must be 2, 4, or 8");
break;
}
// Initialize loop values
d_freq = 0;
d_phase = 0;
}
float
digital_costas_loop_cc::phase_detector_8(gr_complex sample) const
{
/* This technique splits the 8PSK constellation into 2 squashed
QPSK constellations, one when I is larger than Q and one where
Q is larger than I. The error is then calculated proportionally
to these squashed constellations by the const K = sqrt(2)-1.
The signal magnitude must be > 1 or K will incorrectly bias
the error value.
Ref: Z. Huang, Z. Yi, M. Zhang, K. Wang, "8PSK demodulation for
new generation DVB-S2", IEEE Proc. Int. Conf. Communications,
Circuits and Systems, Vol. 2, pp. 1447 - 1450, 2004.
*/
float K = (sqrt(2.0) - 1);
if(fabsf(sample.real()) >= fabsf(sample.imag())) {
return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() -
(sample.imag()>0 ? 1.0 : -1.0) * sample.real() * K);
}
else {
return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() * K -
(sample.imag()>0 ? 1.0 : -1.0) * sample.real());
}
}
float
digital_costas_loop_cc::phase_detector_4(gr_complex sample) const
{
return ((sample.real()>0 ? 1.0 : -1.0) * sample.imag() -
(sample.imag()>0 ? 1.0 : -1.0) * sample.real());
}
float
digital_costas_loop_cc::phase_detector_2(gr_complex sample) const
{
return (sample.real()*sample.imag());
}
/*******************************************************************
SET FUNCTIONS
*******************************************************************/
void
digital_costas_loop_cc::set_loop_bandwidth(float bw)
{
if(bw < 0) {
throw std::out_of_range ("digital_costas_loop_cc: invalid bandwidth. Must be >= 0.");
}
d_loop_bw = bw;
update_gains();
}
void
digital_costas_loop_cc::set_damping_factor(float df)
{
if(df < 0 || df > 1.0) {
throw std::out_of_range ("digital_costas_loop_cc: invalid damping factor. Must be in [0,1].");
}
d_damping = df;
update_gains();
}
void
digital_costas_loop_cc::set_alpha(float alpha)
{
if(alpha < 0 || alpha > 1.0) {
throw std::out_of_range ("digital_costas_loop_cc: invalid alpha. Must be in [0,1].");
}
d_alpha = alpha;
}
void
digital_costas_loop_cc::set_beta(float beta)
{
if(beta < 0 || beta > 1.0) {
throw std::out_of_range ("digital_costas_loop_cc: invalid beta. Must be in [0,1].");
}
d_beta = beta;
}
void
digital_costas_loop_cc::set_frequency(float freq)
{
if(freq > d_max_freq)
d_freq = d_min_freq;
else if(freq < d_min_freq)
d_freq = d_max_freq;
else
d_freq = freq;
}
void
digital_costas_loop_cc::set_phase(float phase)
{
d_phase = phase;
while(d_phase>M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase<-M_TWOPI)
d_phase += M_TWOPI;
}
/*******************************************************************
GET FUNCTIONS
*******************************************************************/
float
digital_costas_loop_cc::get_loop_bandwidth() const
{
return d_loop_bw;
}
float
digital_costas_loop_cc::get_damping_factor() const
{
return d_damping;
}
float
digital_costas_loop_cc::get_alpha() const
{
return d_alpha;
}
float
digital_costas_loop_cc::get_beta() const
{
return d_beta;
}
float
digital_costas_loop_cc::get_frequency() const
{
return d_freq;
}
float
digital_costas_loop_cc::get_phase() const
{
return d_phase;
}
/*******************************************************************
*******************************************************************/
void
digital_costas_loop_cc::update_gains()
{
float denom = (1.0 + 2.0*d_damping*d_loop_bw + d_loop_bw*d_loop_bw);
d_alpha = (4*d_damping*d_loop_bw) / denom;
d_beta = (4*d_loop_bw*d_loop_bw) / denom;
}
int
digital_costas_loop_cc::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *iptr = (gr_complex *) input_items[0];
gr_complex *optr = (gr_complex *) output_items[0];
float *foptr = (float *) output_items[1];
bool write_foptr = output_items.size() >= 2;
float error;
gr_complex nco_out;
if (write_foptr) {
for (int i = 0; i < noutput_items; i++){
nco_out = gr_expj(-d_phase);
optr[i] = iptr[i] * nco_out;
error = (*this.*d_phase_detector)(optr[i]);
error = gr_branchless_clip(error, 1.0);
d_freq = d_freq + d_beta * error;
d_phase = d_phase + d_freq + d_alpha * error;
while(d_phase>M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase<-M_TWOPI)
d_phase += M_TWOPI;
if (d_freq > d_max_freq)
d_freq = d_min_freq;
else if (d_freq < d_min_freq)
d_freq = d_max_freq;
foptr[i] = d_freq;
}
} else {
for (int i = 0; i < noutput_items; i++){
nco_out = gr_expj(-d_phase);
optr[i] = iptr[i] * nco_out;
error = (*this.*d_phase_detector)(optr[i]);
error = gr_branchless_clip(error, 1.0);
d_freq = d_freq + d_beta * error;
d_phase = d_phase + d_freq + d_alpha * error;
while(d_phase>M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase<-M_TWOPI)
d_phase += M_TWOPI;
if (d_freq > d_max_freq)
d_freq = d_min_freq;
else if (d_freq < d_min_freq)
d_freq = d_max_freq;
}
}
return noutput_items;
}
|