1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/* -*- c++ -*- */
/*
* Copyright 2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gr_io_signature.h>
#include <gr_prefs.h>
#include <digital_constellation_receiver_cb.h>
#include <stdexcept>
#include <gr_math.h>
#include <gr_expj.h>
#define M_TWOPI (2*M_PI)
#define VERBOSE_MM 0 // Used for debugging symbol timing loop
#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking
// Public constructor
digital_constellation_receiver_cb_sptr
digital_make_constellation_receiver_cb(digital_constellation_sptr constell,
float loop_bw, float fmin, float fmax)
{
return gnuradio::get_initial_sptr(new digital_constellation_receiver_cb (constell,
loop_bw,
fmin, fmax));
}
static int ios[] = {sizeof(char), sizeof(float), sizeof(float), sizeof(float)};
static std::vector<int> iosig(ios, ios+sizeof(ios)/sizeof(int));
digital_constellation_receiver_cb::digital_constellation_receiver_cb (digital_constellation_sptr constellation,
float loop_bw, float fmin, float fmax)
: gr_block ("constellation_receiver_cb",
gr_make_io_signature (1, 1, sizeof (gr_complex)),
gr_make_io_signaturev (1, 4, iosig)),
d_freq(0), d_max_freq(fmax), d_min_freq(fmin), d_phase(0),
d_constellation(constellation),
d_current_const_point(0)
{
if (d_constellation->dimensionality() != 1)
throw std::runtime_error ("This receiver only works with constellations of dimension 1.");
// Set the damping factor for a critically damped system
d_damping = sqrtf(2.0f)/2.0f;
// Set the bandwidth, which will then call update_gains()
set_loop_bandwidth(loop_bw);
}
/*******************************************************************
SET FUNCTIONS
*******************************************************************/
void
digital_constellation_receiver_cb::set_loop_bandwidth(float bw)
{
if(bw < 0) {
throw std::out_of_range ("digital_constellation_receiver_cb: invalid bandwidth. Must be >= 0.");
}
d_loop_bw = bw;
update_gains();
}
void
digital_constellation_receiver_cb::set_damping_factor(float df)
{
if(df < 0 || df > 1.0) {
throw std::out_of_range ("digital_constellation_receiver_cb: invalid damping factor. Must be in [0,1].");
}
d_damping = df;
update_gains();
}
void
digital_constellation_receiver_cb::set_alpha(float alpha)
{
if(alpha < 0 || alpha > 1.0) {
throw std::out_of_range ("digital_constellation_receiver_cb: invalid alpha. Must be in [0,1].");
}
d_alpha = alpha;
}
void
digital_constellation_receiver_cb::set_beta(float beta)
{
if(beta < 0 || beta > 1.0) {
throw std::out_of_range ("digital_constellation_receiver_cb: invalid beta. Must be in [0,1].");
}
d_beta = beta;
}
void
digital_constellation_receiver_cb::set_frequency(float freq)
{
if(freq > d_max_freq)
d_freq = d_min_freq;
else if(freq < d_min_freq)
d_freq = d_max_freq;
else
d_freq = freq;
}
void
digital_constellation_receiver_cb::set_phase(float phase)
{
d_phase = phase;
while(d_phase>M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase<-M_TWOPI)
d_phase += M_TWOPI;
}
/*******************************************************************
GET FUNCTIONS
*******************************************************************/
float
digital_constellation_receiver_cb::get_loop_bandwidth() const
{
return d_loop_bw;
}
float
digital_constellation_receiver_cb::get_damping_factor() const
{
return d_damping;
}
float
digital_constellation_receiver_cb::get_alpha() const
{
return d_alpha;
}
float
digital_constellation_receiver_cb::get_beta() const
{
return d_beta;
}
float
digital_constellation_receiver_cb::get_frequency() const
{
return d_freq;
}
float
digital_constellation_receiver_cb::get_phase() const
{
return d_phase;
}
/*******************************************************************
*******************************************************************/
void
digital_constellation_receiver_cb::update_gains()
{
float denom = (1.0 + 2.0*d_damping*d_loop_bw + d_loop_bw*d_loop_bw);
d_alpha = (4*d_damping*d_loop_bw) / denom;
d_beta = (4*d_loop_bw*d_loop_bw) / denom;
}
void
digital_constellation_receiver_cb::phase_error_tracking(float phase_error)
{
d_freq += d_beta*phase_error; // adjust frequency based on error
d_phase += d_freq + d_alpha*phase_error; // adjust phase based on error
// Make sure we stay within +-2pi
while(d_phase > M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase < -M_TWOPI)
d_phase += M_TWOPI;
// Limit the frequency range
d_freq = gr_branchless_clip(d_freq, d_max_freq);
#if VERBOSE_COSTAS
printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n",
phase_error, d_phase, d_freq, sample.real(), sample.imag(),
d_constellation->points()[d_current_const_point].real(),
d_constellation->points()[d_current_const_point].imag());
#endif
}
int
digital_constellation_receiver_cb::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = (const gr_complex *) input_items[0];
unsigned char *out = (unsigned char *) output_items[0];
int i=0;
float phase_error;
unsigned int sym_value;
gr_complex sample, nco;
float *out_err = 0, *out_phase = 0, *out_freq = 0;
if(output_items.size() == 4) {
out_err = (float *) output_items[1];
out_phase = (float *) output_items[2];
out_freq = (float *) output_items[3];
}
while((i < noutput_items) && (i < ninput_items[0])) {
sample = in[i];
nco = gr_expj(d_phase); // get the NCO value for derotating the current sample
sample = nco*sample; // get the downconverted symbol
sym_value = d_constellation->decision_maker_pe(&sample, &phase_error);
// phase_error = -arg(sample*conj(d_constellation->points()[sym_value]));
phase_error_tracking(phase_error); // corrects phase and frequency offsets
out[i] = sym_value;
if(output_items.size() == 4) {
out_err[i] = phase_error;
out_phase[i] = d_phase;
out_freq[i] = d_freq;
}
i++;
}
consume_each(i);
return i;
}
|