summaryrefslogtreecommitdiff
path: root/gr-digital/lib/digital_constellation_receiver_cb.cc
blob: 56385f11e64c87ae3fb2c29fe5fc1ce50aece391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* -*- c++ -*- */
/*
 * Copyright 2011 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gr_io_signature.h>
#include <gr_prefs.h>
#include <digital_constellation_receiver_cb.h>
#include <stdexcept>
#include <gr_math.h>
#include <gr_expj.h>


#define M_TWOPI (2*M_PI)
#define VERBOSE_MM     0     // Used for debugging symbol timing loop
#define VERBOSE_COSTAS 0     // Used for debugging phase and frequency tracking

// Public constructor

digital_constellation_receiver_cb_sptr 
digital_make_constellation_receiver_cb(digital_constellation_sptr constell,
				       float alpha, float beta,
				       float fmin, float fmax)
{
  return gnuradio::get_initial_sptr(new digital_constellation_receiver_cb (constell,
									   alpha, beta,
									   fmin, fmax));
}
 
static int ios[] = {sizeof(char), sizeof(float), sizeof(float), sizeof(float)};
static std::vector<int> iosig(ios, ios+sizeof(ios)/sizeof(int));
digital_constellation_receiver_cb::digital_constellation_receiver_cb (digital_constellation_sptr constellation, 
								      float alpha, float beta,
								      float fmin, float fmax)
  : gr_block ("constellation_receiver_cb",
	      gr_make_io_signature (1, 1, sizeof (gr_complex)),
	      gr_make_io_signaturev (1, 4, iosig)),
    d_constellation(constellation), 
    d_alpha(alpha), d_beta(beta), d_freq(0), d_max_freq(fmax), d_min_freq(fmin), d_phase(0),
    d_current_const_point(0)
{
  if (d_constellation->dimensionality() != 1)
    throw std::runtime_error ("This receiver only works with constellations of dimension 1.");
}

void
digital_constellation_receiver_cb::phase_error_tracking(float phase_error)
{
  d_freq += d_beta*phase_error;             // adjust frequency based on error
  d_phase += d_freq + d_alpha*phase_error;  // adjust phase based on error

  // Make sure we stay within +-2pi
  while(d_phase > M_TWOPI)
    d_phase -= M_TWOPI;
  while(d_phase < -M_TWOPI)
    d_phase += M_TWOPI;
  
  // Limit the frequency range
  d_freq = gr_branchless_clip(d_freq, d_max_freq);
  
#if VERBOSE_COSTAS
  printf("cl: phase_error: %f  phase: %f  freq: %f  sample: %f+j%f  constellation: %f+j%f\n",
	 phase_error, d_phase, d_freq, sample.real(), sample.imag(), 
	 d_constellation->points()[d_current_const_point].real(),
	 d_constellation->points()[d_current_const_point].imag());
#endif
}

int
digital_constellation_receiver_cb::general_work (int noutput_items,
						 gr_vector_int &ninput_items,
						 gr_vector_const_void_star &input_items,
						 gr_vector_void_star &output_items)
{
  const gr_complex *in = (const gr_complex *) input_items[0];
  unsigned char *out = (unsigned char *) output_items[0];

  int i=0;

  float phase_error;
  unsigned int sym_value;
  gr_complex sample, nco;

  float *out_err = 0, *out_phase = 0, *out_freq = 0;
  if(output_items.size() == 4) {
    out_err = (float *) output_items[1];
    out_phase = (float *) output_items[2];
    out_freq = (float *) output_items[3];
  }

  while((i < noutput_items) && (i < ninput_items[0])) {
    sample = in[i];
    nco = gr_expj(d_phase);   // get the NCO value for derotating the current sample
    sample = nco*sample;      // get the downconverted symbol
    sym_value = d_constellation->decision_maker_pe(&sample, &phase_error);
    //    phase_error = -arg(sample*conj(d_constellation->points()[sym_value]));
    phase_error_tracking(phase_error);  // corrects phase and frequency offsets
    out[i] = sym_value;
    if(output_items.size() == 4) {
      out_err[i] = phase_error;
      out_phase[i] = d_phase;
      out_freq[i] = d_freq;
    }
    i++;
  }

  consume_each(i);
  return i;
}