1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
/* -*- c++ -*- */
/*
* Copyright 2010, 2011 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gr_io_signature.h>
#include <digital_constellation.h>
#include <digital_metric_type.h>
#include <gr_math.h>
#include <gr_complex.h>
#include <math.h>
#include <iostream>
#include <stdlib.h>
#include <float.h>
#include <stdexcept>
#define M_TWOPI (2*M_PI)
#define SQRT_TWO 0.707107
// Base Constellation Class
digital_constellation::digital_constellation (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int dimensionality) :
d_constellation(constellation),
d_pre_diff_code(pre_diff_code),
d_rotational_symmetry(rotational_symmetry),
d_dimensionality(dimensionality)
{
if (pre_diff_code.size() == 0)
d_apply_pre_diff_code = false;
else if (pre_diff_code.size() != constellation.size())
throw std::runtime_error ("The constellation and pre-diff code must be of the same length.");
else
d_apply_pre_diff_code = true;
calc_arity();
}
digital_constellation::digital_constellation () :
d_apply_pre_diff_code(false),
d_rotational_symmetry(0),
d_dimensionality(1)
{
calc_arity();
}
//! Returns the constellation points for a symbol value
void
digital_constellation::map_to_points(unsigned int value, gr_complex *points)
{
for (unsigned int i=0; i<d_dimensionality; i++)
points[i] = d_constellation[value*d_dimensionality + i];
}
std::vector<gr_complex>
digital_constellation::map_to_points_v(unsigned int value)
{
std::vector<gr_complex> points_v;
points_v.resize(d_dimensionality);
map_to_points(value, &(points_v[0]));
return points_v;
}
float
digital_constellation::get_distance(unsigned int index, const gr_complex *sample)
{
float dist = 0;
for (unsigned int i=0; i<d_dimensionality; i++) {
dist += norm(sample[i] - d_constellation[index*d_dimensionality + i]);
}
return dist;
}
unsigned int
digital_constellation::get_closest_point(const gr_complex *sample)
{
unsigned int min_index = 0;
float min_euclid_dist;
float euclid_dist;
min_euclid_dist = get_distance(0, sample);
min_index = 0;
for (unsigned int j = 1; j < d_arity; j++){
euclid_dist = get_distance(j, sample);
if (euclid_dist < min_euclid_dist){
min_euclid_dist = euclid_dist;
min_index = j;
}
}
return min_index;
}
unsigned int
digital_constellation::decision_maker_pe(const gr_complex *sample, float *phase_error)
{
unsigned int index = decision_maker(sample);
*phase_error = 0;
for (unsigned int d=0; d<d_dimensionality; d++)
*phase_error += -arg(sample[d]*conj(d_constellation[index+d]));
return index;
}
/*
unsigned int digital_constellation::decision_maker_e(const gr_complex *sample, float *error)
{
unsigned int index = decision_maker(sample);
*error = 0;
for (unsigned int d=0; d<d_dimensionality; d++)
*error += sample[d]*conj(d_constellation[index+d]);
return index;
}
*/
std::vector<gr_complex> digital_constellation::s_points () {
if (d_dimensionality != 1)
throw std::runtime_error ("s_points only works for dimensionality 1 constellations.");
else
return d_constellation;
}
std::vector<std::vector<gr_complex> >
digital_constellation::v_points ()
{
std::vector<std::vector<gr_complex> > vv_const;
vv_const.resize(d_arity);
for (unsigned int p=0; p<d_arity; p++) {
std::vector<gr_complex> v_const;
v_const.resize(d_dimensionality);
for (unsigned int d=0; d<d_dimensionality; d++) {
v_const[d] = d_constellation[p*d_dimensionality+d];
}
vv_const[p] = v_const;
}
return vv_const;
}
void
digital_constellation::calc_metric(const gr_complex *sample, float *metric,
trellis_metric_type_t type)
{
switch (type){
case TRELLIS_EUCLIDEAN:
calc_euclidean_metric(sample, metric);
break;
case TRELLIS_HARD_SYMBOL:
calc_hard_symbol_metric(sample, metric);
break;
case TRELLIS_HARD_BIT:
throw std::runtime_error ("Invalid metric type (not yet implemented).");
break;
default:
throw std::runtime_error ("Invalid metric type.");
}
}
void
digital_constellation::calc_euclidean_metric(const gr_complex *sample, float *metric)
{
for (unsigned int o=0; o<d_arity; o++) {
metric[o] = get_distance(o, sample);
}
}
void
digital_constellation::calc_hard_symbol_metric(const gr_complex *sample, float *metric)
{
float minm = FLT_MAX;
unsigned int minmi = 0;
for (unsigned int o=0; o<d_arity; o++) {
float dist = get_distance(o, sample);
if (dist < minm) {
minm = dist;
minmi = o;
}
}
for(unsigned int o=0; o<d_arity; o++) {
metric[o] = (o==minmi?0.0:1.0);
}
}
void
digital_constellation::calc_arity ()
{
if (d_constellation.size() % d_dimensionality != 0)
throw std::runtime_error ("Constellation vector size must be a multiple of the dimensionality.");
d_arity = d_constellation.size()/d_dimensionality;
}
unsigned int
digital_constellation::decision_maker_v (std::vector<gr_complex> sample)
{
assert(sample.size() == d_dimensionality);
return decision_maker (&(sample[0]));
}
digital_constellation_calcdist_sptr
digital_make_constellation_calcdist(std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int dimensionality)
{
return digital_constellation_calcdist_sptr(new digital_constellation_calcdist
(constellation, pre_diff_code,
rotational_symmetry, dimensionality));
}
digital_constellation_calcdist::digital_constellation_calcdist(std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int dimensionality) :
digital_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality)
{}
// Chooses points base on shortest distance.
// Inefficient.
unsigned int
digital_constellation_calcdist::decision_maker(const gr_complex *sample)
{
return get_closest_point(sample);
}
digital_constellation_sector::digital_constellation_sector (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int dimensionality,
unsigned int n_sectors) :
digital_constellation(constellation, pre_diff_code, rotational_symmetry, dimensionality),
n_sectors(n_sectors)
{
}
unsigned int
digital_constellation_sector::decision_maker (const gr_complex *sample)
{
unsigned int sector;
sector = get_sector(sample);
return sector_values[sector];
}
void
digital_constellation_sector::find_sector_values ()
{
unsigned int i;
sector_values.clear();
for (i=0; i<n_sectors; i++) {
sector_values.push_back(calc_sector_value(i));
}
}
digital_constellation_rect_sptr
digital_make_constellation_rect(std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int real_sectors, unsigned int imag_sectors,
float width_real_sectors, float width_imag_sectors)
{
return digital_constellation_rect_sptr(new digital_constellation_rect
(constellation, pre_diff_code,
rotational_symmetry,
real_sectors, imag_sectors,
width_real_sectors,
width_imag_sectors));
}
digital_constellation_rect::digital_constellation_rect (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int rotational_symmetry,
unsigned int real_sectors, unsigned int imag_sectors,
float width_real_sectors, float width_imag_sectors) :
digital_constellation_sector(constellation, pre_diff_code, rotational_symmetry, 1, real_sectors * imag_sectors),
n_real_sectors(real_sectors), n_imag_sectors(imag_sectors),
d_width_real_sectors(width_real_sectors), d_width_imag_sectors(width_imag_sectors)
{
find_sector_values();
}
unsigned int
digital_constellation_rect::get_sector (const gr_complex *sample)
{
int real_sector, imag_sector;
unsigned int sector;
real_sector = int(real(*sample)/d_width_real_sectors + n_real_sectors/2.0);
if(real_sector < 0)
real_sector = 0;
if(real_sector >= (int)n_real_sectors)
real_sector = n_real_sectors-1;
imag_sector = int(imag(*sample)/d_width_imag_sectors + n_imag_sectors/2.0);
if(imag_sector < 0)
imag_sector = 0;
if(imag_sector >= (int)n_imag_sectors)
imag_sector = n_imag_sectors-1;
sector = real_sector * n_imag_sectors + imag_sector;
return sector;
}
unsigned int
digital_constellation_rect::calc_sector_value (unsigned int sector)
{
unsigned int real_sector, imag_sector;
gr_complex sector_center;
unsigned int closest_point;
real_sector = float(sector)/n_imag_sectors;
imag_sector = sector - real_sector * n_imag_sectors;
sector_center = gr_complex((real_sector + 0.5 - n_real_sectors/2.0) * d_width_real_sectors,
(imag_sector + 0.5 - n_imag_sectors/2.0) * d_width_imag_sectors);
closest_point = get_closest_point(§or_center);
return closest_point;
}
digital_constellation_psk_sptr
digital_make_constellation_psk(std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int n_sectors)
{
return digital_constellation_psk_sptr(new digital_constellation_psk
(constellation, pre_diff_code,
n_sectors));
}
digital_constellation_psk::digital_constellation_psk (std::vector<gr_complex> constellation,
std::vector<unsigned int> pre_diff_code,
unsigned int n_sectors) :
digital_constellation_sector(constellation, pre_diff_code, constellation.size(), 1, n_sectors)
{
find_sector_values();
}
unsigned int
digital_constellation_psk::get_sector (const gr_complex *sample)
{
float phase = arg(*sample);
float width = M_TWOPI / n_sectors;
int sector = floor(phase/width + 0.5);
unsigned int u_sector;
if (sector < 0)
sector += n_sectors;
u_sector = sector;
return sector;
}
unsigned int
digital_constellation_psk::calc_sector_value (unsigned int sector)
{
float phase = sector * M_TWOPI / n_sectors;
gr_complex sector_center = gr_complex(cos(phase), sin(phase));
unsigned int closest_point = get_closest_point(§or_center);
return closest_point;
}
digital_constellation_bpsk_sptr
digital_make_constellation_bpsk()
{
return digital_constellation_bpsk_sptr(new digital_constellation_bpsk ());
}
digital_constellation_bpsk::digital_constellation_bpsk ()
{
d_constellation.resize(2);
d_constellation[0] = gr_complex(-1, 0);
d_constellation[1] = gr_complex(1, 0);
d_rotational_symmetry = 2;
d_dimensionality = 1;
calc_arity();
}
unsigned int
digital_constellation_bpsk::decision_maker(const gr_complex *sample)
{
return (real(*sample) > 0);
}
digital_constellation_qpsk_sptr
digital_make_constellation_qpsk()
{
return digital_constellation_qpsk_sptr(new digital_constellation_qpsk ());
}
digital_constellation_qpsk::digital_constellation_qpsk ()
{
d_constellation.resize(4);
// Gray-coded
d_constellation[0] = gr_complex(-SQRT_TWO, -SQRT_TWO);
d_constellation[1] = gr_complex(SQRT_TWO, -SQRT_TWO);
d_constellation[2] = gr_complex(-SQRT_TWO, SQRT_TWO);
d_constellation[3] = gr_complex(SQRT_TWO, SQRT_TWO);
d_rotational_symmetry = 4;
d_dimensionality = 1;
calc_arity();
}
unsigned int
digital_constellation_qpsk::decision_maker(const gr_complex *sample)
{
// Real component determines small bit.
// Imag component determines big bit.
return 2*(imag(*sample)>0) + (real(*sample)>0);
}
digital_constellation_8psk_sptr
digital_make_constellation_8psk()
{
return digital_constellation_8psk_sptr(new digital_constellation_8psk ());
}
digital_constellation_8psk::digital_constellation_8psk ()
{
float angle = M_PI/8.0;
d_constellation.resize(8);
// Gray-coded
d_constellation[0] = gr_complex(cos( 1*angle), sin( 1*angle));
d_constellation[1] = gr_complex(cos( 7*angle), sin( 7*angle));
d_constellation[2] = gr_complex(cos(15*angle), sin(15*angle));
d_constellation[3] = gr_complex(cos( 9*angle), sin( 9*angle));
d_constellation[4] = gr_complex(cos( 3*angle), sin( 3*angle));
d_constellation[5] = gr_complex(cos( 5*angle), sin( 5*angle));
d_constellation[6] = gr_complex(cos(13*angle), sin(13*angle));
d_constellation[7] = gr_complex(cos(11*angle), sin(11*angle));
d_rotational_symmetry = 8;
d_dimensionality = 1;
calc_arity();
}
unsigned int
digital_constellation_8psk::decision_maker(const gr_complex *sample)
{
unsigned int ret = 0;
float re = sample->real();
float im = sample->imag();
if(fabsf(re) <= fabsf(im))
ret = 4;
if(re <= 0)
ret |= 1;
if(im <= 0)
ret |= 2;
return ret;
}
|