summaryrefslogtreecommitdiff
path: root/gr-digital/examples/snr_estimators.py
blob: 432abd4553765131be3f4d00812b3bded44bf531 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python

import sys

try:
    import scipy
    from scipy import stats
except ImportError:
    print "Error: Program requires scipy (www.scipy.org)."
    sys.exit(1)

try:
    import pylab
except ImportError:
    print "Error: Program requires Matplotlib (matplotlib.sourceforge.net)."
    sys.exit(1)
    
from gnuradio import gr, digital
from optparse import OptionParser
from gnuradio.eng_option import eng_option

'''
This example program uses Python and GNU Radio to calculate SNR of a
noise BPSK signal to compare them.

For an explination of the online algorithms, see:
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics
'''

def online_skewness(data, alpha):
    n = 0
    mean = 0
    M2 = 0
    M3 = 0
    d_M3 = 0

    for n in xrange(len(data)):
        delta = data[n] - mean
        delta_n = delta / (n+1)
        term1 = delta * delta_n * (n)
        mean = mean + delta_n
        M3 = term1 * delta_n * (n - 1) - 3 * delta_n * M2
        M2 = M2 + term1
        d_M3 = (0.001)*M3 + (1-0.001)*d_M3;
        
    return d_M3

def snr_est_simple(signal):
    y1 = scipy.mean(abs(signal))
    y2 = scipy.real(scipy.mean(signal**2))
    y3 = (y1*y1 - y2)
    snr_rat = y1*y1/y3
    return 10.0*scipy.log10(snr_rat), snr_rat
    
def snr_est_skew(signal):
    y1 = scipy.mean(abs(signal))
    y2 = scipy.mean(scipy.real(signal**2))
    y3 = (y1*y1 - y2)
    y4 = online_skewness(abs(signal.real), 0.001)

    skw = y4*y4 / (y2*y2*y2);
    snr_rat = y1*y1 / (y3 + skw*y1*y1)
    return 10.0*scipy.log10(snr_rat), snr_rat

def snr_est_m2m4(signal):
    M2 = scipy.mean(abs(signal)**2)
    M4 = scipy.mean(abs(signal)**4)
    snr_rat = 2*scipy.sqrt(2*M2*M2 - M4) / (M2 - scipy.sqrt(2*M2*M2 - M4))
    return 10.0*scipy.log10(snr_rat), snr_rat

def snr_est_svr(signal):
    N = len(signal)
    ssum = 0
    msum = 0
    for i in xrange(1, N):
        ssum += (abs(signal[i])**2)*(abs(signal[i-1])**2)
        msum += (abs(signal[i])**4)
    savg = (1.0/(float(N)-1.0))*ssum
    mavg = (1.0/(float(N)-1.0))*msum
    beta = savg / (mavg - savg)
    
    snr_rat = 2*((beta - 1) + scipy.sqrt(beta*(beta-1)))
    return 10.0*scipy.log10(snr_rat), snr_rat
    

def main():
    gr_estimators = {"simple": digital.SNR_EST_SIMPLE,
                     "skew": digital.SNR_EST_SKEW,
                     "m2m4": digital.SNR_EST_M2M4,
                     "svr": digital.SNR_EST_SVR}
    py_estimators = {"simple": snr_est_simple,
                     "skew": snr_est_skew,
                     "m2m4": snr_est_m2m4,
                     "svr": snr_est_svr}
    
    
    parser = OptionParser(option_class=eng_option, conflict_handler="resolve")
    parser.add_option("-N", "--nsamples", type="int", default=10000,
                      help="Set the number of samples to process [default=%default]")
    parser.add_option("", "--snr-min", type="float", default=-5,
                      help="Minimum SNR [default=%default]")
    parser.add_option("", "--snr-max", type="float", default=20,
                      help="Maximum SNR [default=%default]")
    parser.add_option("", "--snr-step", type="float", default=0.5,
                      help="SNR step amount [default=%default]")
    parser.add_option("-t", "--type", type="choice",
                      choices=gr_estimators.keys(), default="simple",
                      help="Estimator type {0} [default=%default]".format(
                            gr_estimators.keys()))
    (options, args) = parser.parse_args ()

    N = options.nsamples
    xx = scipy.random.randn(N)
    xy = scipy.random.randn(N)
    bits = 2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1

    snr_known = list()
    snr_python = list()
    snr_gr = list()
    
    # when to issue an SNR tag; can be ignored in this example.
    ntag = 10000

    n_cpx = xx + 1j*xy

    py_est = py_estimators[options.type]
    gr_est = gr_estimators[options.type]

    SNR_min = options.snr_min
    SNR_max = options.snr_max
    SNR_step = options.snr_step
    SNR_dB = scipy.arange(SNR_min, SNR_max+SNR_step, SNR_step)
    for snr in SNR_dB:
        SNR = 10.0**(snr/10.0)
        scale = scipy.sqrt(SNR)
        yy = bits + n_cpx/scale
        print "SNR: ", snr

        Sknown = scipy.mean(yy**2)
        Nknown = scipy.var(n_cpx/scale)/2
        snr0 = Sknown/Nknown
        snr0dB = 10.0*scipy.log10(snr0)
        snr_known.append(snr0dB)

        snrdB, snr = py_est(yy)        
        snr_python.append(snrdB)

        gr_src = gr.vector_source_c(bits.tolist(), False)
        gr_snr = digital.mpsk_snr_est_cc(gr_est, ntag, 0.001)
        gr_chn = gr.channel_model(1.0/scale)
        gr_snk = gr.null_sink(gr.sizeof_gr_complex)
        tb = gr.top_block()
        tb.connect(gr_src, gr_chn, gr_snr, gr_snk)
        tb.run()

        snr_gr.append(gr_snr.snr())

    f1 = pylab.figure(1)
    s1 = f1.add_subplot(1,1,1)
    s1.plot(SNR_dB, snr_known, "k-o", linewidth=2, label="Known")
    s1.plot(SNR_dB, snr_python, "b-o", linewidth=2, label="Python")
    s1.plot(SNR_dB, snr_gr, "g-o", linewidth=2, label="GNU Radio")
    s1.grid(True)
    s1.set_title('SNR Estimators')
    s1.set_xlabel('SNR (dB)')
    s1.set_ylabel('Estimated SNR')
    s1.legend()

    pylab.show()


if __name__ == "__main__":
    main()