1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/* -*- c++ -*- */
/*
* Copyright 2007 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cvsd_decode_bs.h>
#include <gr_io_signature.h>
/*
* Create a new instance of cvsd_decode_bs and return
* a boost shared_ptr. This is effectively the public constructor.
*/
cvsd_decode_bs_sptr
cvsd_make_decode_bs (short min_step, short max_step, double step_decay,
double accum_decay, int K, int J,
short pos_accum_max, short neg_accum_max)
{
return cvsd_decode_bs_sptr (new cvsd_decode_bs (min_step, max_step,
step_decay, accum_decay, K, J,
pos_accum_max, neg_accum_max));
}
cvsd_decode_bs::cvsd_decode_bs (short min_step, short max_step, double step_decay,
double accum_decay, int K, int J,
short pos_accum_max, short neg_accum_max)
: gr_sync_interpolator ("cvsd_decode_bs",
gr_make_io_signature (1, 1, sizeof (unsigned char)),
gr_make_io_signature (1, 1, sizeof (short)),
8),
d_min_step (min_step), d_max_step(max_step), d_step_decay(step_decay),
d_accum_decay(accum_decay), d_K(K), d_J(J),
d_pos_accum_max(pos_accum_max), d_neg_accum_max(neg_accum_max),
d_accum(0),
d_loop_counter(1),
d_runner(0),
d_runner_mask(0),
d_stepsize(min_step)
{
assert(d_pos_accum_max <= SHRT_MAX);
assert(d_neg_accum_max >= -SHRT_MAX);
assert(d_K <= 32);
assert(d_J <= d_K);
// nothing else required in this example
}
cvsd_decode_bs::~cvsd_decode_bs ()
{
// nothing else required in this example
}
unsigned char cvsd_decode_bs::cvsd_bitwise_sum (unsigned int input)
{
unsigned int temp=input;
unsigned char bits=0;
while(temp) {
temp=temp&(temp-1);
bits++;
}
return bits;
}
int cvsd_decode_bs::cvsd_round (double input)
{
double temp;
temp=input+0.5;
temp=floor(temp);
return (int)temp;
}
unsigned int cvsd_decode_bs::cvsd_pow (short radix, short power)
{
double d_radix = (double) radix;
int i_power = (int) power;
double output;
output=pow(d_radix,i_power);
return ( (unsigned int) cvsd_round(output));
}
int
cvsd_decode_bs::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const unsigned char *in = (const unsigned char *) input_items[0];
short *out = (short *) output_items[0];
int i=0;
short output_short=0; // 2 bytes 0 .. 65,535
unsigned char bit_count=0; // 1 byte, 0 .. 255
unsigned int mask=0; // 4 bytes, 0 .. 4,294,967,295
unsigned char input_byte=0; // 1 bytes
unsigned char input_bit=0; // 1 byte, 0 .. 255
// Loop through each input data point
for(i = 0; i < noutput_items/8.0; i++) {
input_byte = in[i];
// Initiliaze bit counter
bit_count=0;
while(bit_count<8) {
// Compute the Appropriate Mask
mask=cvsd_pow(2,7-bit_count);
// Pull off the corresponding bit
input_bit = input_byte & mask;
// Update the bit counter
bit_count++;
// Update runner with the next input bit
// Runner is a shift-register; shift left, add on newest output bit
d_runner = (d_runner<<1) | ((unsigned int) input_bit);
// Run this only if you have >= J bits in your shift register
if (d_loop_counter>=d_J) {
// Update Step Size
d_runner_mask=(cvsd_pow(2,d_J)-1);
if ((cvsd_bitwise_sum(d_runner & d_runner_mask)>=d_J)||(cvsd_bitwise_sum((~d_runner) & d_runner_mask)>=d_J)) {
// Runs of 1s and 0s
d_stepsize = std::min( (short) (d_stepsize + d_min_step), d_max_step);
}
else {
// No runs of 1s and 0s
d_stepsize = std::max( (short) cvsd_round(d_stepsize*d_step_decay), d_min_step);
}
}
// Update Accum (i.e. the reference value)
if (input_bit) {
d_accum=d_accum+d_stepsize;
}
else {
d_accum=d_accum-d_stepsize;
}
// Multiply by Accum_Decay
d_accum=(cvsd_round(d_accum*d_accum_decay));
// Check for overflow
if (d_accum >=((int) d_pos_accum_max)) {
d_accum=(int)d_pos_accum_max;
}
else if (d_accum <=((int) d_neg_accum_max)) {
d_accum=(int)d_neg_accum_max;
}
// Find the output short to write to the file
output_short=((short) d_accum);
if (d_loop_counter <= d_K) {
d_loop_counter++;
}
*(out++) = output_short;
} // while ()
} // for()
return noutput_items;
}
|