1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
<?xml version="1.0"?>
<!--
###################################################
##Add Block:
## all types, 1 output, 2 to inf inputs
###################################################
-->
<block>
<name>dsim</name>
<key>controls_dsim</key>
<category>controls</category>
<import>import gnuradio.controls.controls_dsim as controls_dsim</import>
<make>controls_dsim.dsim()
self.$(id).set_parameters($P, $I, $D, $n0, $n1, $step, $d0, $d1, $window)
</make>
<param>
<name>IO Type</name>
<key>type</key>
<type>enum</type>
<option><name>FC32_FC32</name><key>fc32_fc32</key></option>
<option><name>F32_F32</name><key>f32_f32</key></option>
<option><name>SC32_SC32</name><key>sc32_sc32</key></option>
<option><name>S32_S32</name><key>s32_s32</key></option>
<option><name>SC16_SC16</name><key>sc16_sc16</key></option>
<option><name>S16_S16</name><key>s16_s16</key></option>
<option><name>SC8_SC8</name><key>sc8_sc8</key></option>
<option><name>S8_S8</name><key>s8_s8</key></option>
</param>
<param>
<name>Num Inputs</name>
<key>num_inputs</key>
<value>1</value>
<type>int</type>
</param>
<param>
<name>Vec Length</name>
<key>vlen</key>
<value>1</value>
<type>int</type>
</param>
<!--
Desimulation options
-->
<param>
<name>Controller Gain(P)</name>
<key>P</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>Tau_I(I)</name>
<key>I</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>Tau_D(D)</name>
<key>D</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>n0</name>
<key>n0</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>n1</name>
<key>n1</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>step</name>
<key>step</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>d0</name>
<key>d0</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>d1</name>
<key>d1</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>window</name>
<key>window</key>
<value>0</value>
<type>real</type>
</param>
<!--
Check if number of inputs are greater than 0, and if vector length
is greater than 0.
-->
<check>$num_inputs > 0</check>
<check>$vlen > 0</check>
<sink>
<name>in</name>
<type>$(str($type).split('_')[0])</type>
<vlen>$vlen</vlen>
<nports>$num_inputs</nports>
</sink>
<source>
<name>out</name>
<type>$(str($type).split('_')[1])</type>
<vlen>$vlen</vlen>
</source>
<doc>
Discrete time simulation
out[i] = in0[i] + in1[i] + in2[i]
The math block adds an arbitrary number of input streams element by element, \
and produces and single output stream. Elements may be single numbers, \
or vectors of numbers, depending upon the value of the vec length parameter.
The preload parameter allows users to implement feedback loops with this math block. \
For example, to enable a feedback of 1 on the 2nd port, set preload to [0, 0, 1]. \
</doc>
</block>
|