1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/* -*- c++ -*- */
/*
* Copyright 2004,2006,2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
// @WARNING@
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "@NAME_IMPL@.h"
#include <gr_io_signature.h>
#include <assert.h>
namespace gr {
namespace blocks {
static const unsigned int BITS_PER_TYPE = sizeof(@O_TYPE@) * 8;
@NAME@::sptr
@NAME@::make(unsigned int bits_per_chunk,
gr_endianness_t endianness)
{
return gnuradio::get_initial_sptr
(new @NAME_IMPL@(bits_per_chunk, endianness));
}
@NAME_IMPL@::@NAME_IMPL@(unsigned int bits_per_chunk,
gr_endianness_t endianness)
: gr_block("@NAME@",
gr_make_io_signature(1, -1, sizeof(@I_TYPE@)),
gr_make_io_signature(1, -1, sizeof(@O_TYPE@))),
d_bits_per_chunk(bits_per_chunk), d_endianness(endianness), d_index(0)
{
assert(bits_per_chunk <= BITS_PER_TYPE);
assert(bits_per_chunk > 0);
set_relative_rate(bits_per_chunk/(1.0 * BITS_PER_TYPE));
}
@NAME_IMPL@::~@NAME_IMPL@()
{
}
void
@NAME_IMPL@::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
int input_required = (int)ceil((d_index+noutput_items * 1.0 * BITS_PER_TYPE)
/ d_bits_per_chunk);
unsigned ninputs = ninput_items_required.size();
for(unsigned int i = 0; i < ninputs; i++) {
ninput_items_required[i] = input_required;
}
}
unsigned int
get_bit_be1(const @I_TYPE@ *in_vector, unsigned int bit_addr,
unsigned int bits_per_chunk)
{
unsigned int byte_addr = (int)bit_addr/bits_per_chunk;
@I_TYPE@ x = in_vector[byte_addr];
unsigned int residue = bit_addr - byte_addr * bits_per_chunk;
//printf("Bit addr %d byte addr %d residue %d val %d\n",bit_addr,byte_addr,residue,(x>>(bits_per_chunk-1-residue))&1);
return (x >> (bits_per_chunk-1-residue)) & 1;
}
int
@NAME_IMPL@::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
unsigned int index_tmp = d_index;
assert(input_items.size() == output_items.size());
int nstreams = input_items.size();
for(int m=0; m< nstreams; m++) {
const @I_TYPE@ *in = (@I_TYPE@ *)input_items[m];
@O_TYPE@ *out = (@O_TYPE@ *)output_items[m];
index_tmp=d_index;
// per stream processing
//assert((ninput_items[m]-d_index)*d_bits_per_chunk >= noutput_items*BITS_PER_TYPE);
switch(d_endianness) {
case GR_MSB_FIRST:
for(int i = 0; i < noutput_items; i++) {
@O_TYPE@ tmp=0;
for(unsigned int j = 0; j < BITS_PER_TYPE; j++) {
tmp = (tmp<<1) | get_bit_be1(in, index_tmp, d_bits_per_chunk);
index_tmp++;
}
out[i] = tmp;
}
break;
case GR_LSB_FIRST:
for(int i = 0; i < noutput_items; i++) {
unsigned long tmp=0;
for(unsigned int j = 0; j < BITS_PER_TYPE; j++) {
tmp = (tmp>>1) | (get_bit_be1(in, index_tmp, d_bits_per_chunk) << (BITS_PER_TYPE-1));
index_tmp++;
}
out[i] = tmp;
}
break;
default:
assert(0);
}
}
d_index = index_tmp;
consume_each((int)(d_index/d_bits_per_chunk));
d_index = d_index%d_bits_per_chunk;
return noutput_items;
}
} /* namespace blocks */
} /* namespace gr */
|