1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
/* -*- c++ -*- */
/*
* Copyright 2004 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <audio_alsa_sink.h>
#include <gr_io_signature.h>
#include <gr_prefs.h>
#include <stdio.h>
#include <iostream>
#include <stdexcept>
#include <gri_alsa.h>
static bool CHATTY_DEBUG = false;
static snd_pcm_format_t acceptable_formats[] = {
// these are in our preferred order...
SND_PCM_FORMAT_S32,
SND_PCM_FORMAT_S16
};
#define NELEMS(x) (sizeof(x)/sizeof(x[0]))
static std::string
default_device_name ()
{
return gr_prefs::singleton()->get_string("audio_alsa", "default_output_device", "hw:0,0");
}
static double
default_period_time ()
{
return std::max(0.001, gr_prefs::singleton()->get_double("audio_alsa", "period_time", 0.010));
}
static int
default_nperiods ()
{
return std::max(2L, gr_prefs::singleton()->get_long("audio_alsa", "nperiods", 4));
}
// ----------------------------------------------------------------
audio_alsa_sink_sptr
audio_alsa_make_sink (int sampling_rate,
const std::string dev,
bool ok_to_block)
{
return audio_alsa_sink_sptr (new audio_alsa_sink (sampling_rate, dev,
ok_to_block));
}
audio_alsa_sink::audio_alsa_sink (int sampling_rate,
const std::string device_name,
bool ok_to_block)
: gr_sync_block ("audio_alsa_sink",
gr_make_io_signature (0, 0, 0),
gr_make_io_signature (0, 0, 0)),
d_sampling_rate (sampling_rate),
d_device_name (device_name.empty() ? default_device_name() : device_name),
d_pcm_handle (0),
d_hw_params ((snd_pcm_hw_params_t *)(new char[snd_pcm_hw_params_sizeof()])),
d_sw_params ((snd_pcm_sw_params_t *)(new char[snd_pcm_sw_params_sizeof()])),
d_nperiods (default_nperiods()),
d_period_time_us ((unsigned int) (default_period_time() * 1e6)),
d_period_size (0),
d_buffer_size_bytes (0), d_buffer (0),
d_worker (0), d_special_case_mono_to_stereo (false),
d_nunderuns (0), d_nsuspends (0)
{
CHATTY_DEBUG = gr_prefs::singleton()->get_bool("audio_alsa", "verbose", false);
int error;
int dir;
// open the device for playback
error = snd_pcm_open(&d_pcm_handle, d_device_name.c_str (),
SND_PCM_STREAM_PLAYBACK, 0);
if (error < 0){
fprintf (stderr, "audio_alsa_sink[%s]: %s\n",
d_device_name.c_str(), snd_strerror(error));
throw std::runtime_error ("audio_alsa_sink");
}
// Fill params with a full configuration space for a PCM.
error = snd_pcm_hw_params_any(d_pcm_handle, d_hw_params);
if (error < 0)
bail ("broken configuration for playback", error);
if (CHATTY_DEBUG)
gri_alsa_dump_hw_params (d_pcm_handle, d_hw_params, stdout);
// now that we know how many channels the h/w can handle, set input signature
unsigned int umin_chan, umax_chan;
snd_pcm_hw_params_get_channels_min (d_hw_params, &umin_chan);
snd_pcm_hw_params_get_channels_max (d_hw_params, &umax_chan);
int min_chan = std::min (umin_chan, 1000U);
int max_chan = std::min (umax_chan, 1000U);
// As a special case, if the hw's min_chan is two, we'll accept
// a single input and handle the duplication ourselves.
if (min_chan == 2){
min_chan = 1;
d_special_case_mono_to_stereo = true;
}
set_input_signature (gr_make_io_signature (min_chan, max_chan,
sizeof (float)));
// fill in portions of the d_hw_params that we know now...
// Specify the access methods we implement
// For now, we only handle RW_INTERLEAVED...
snd_pcm_access_mask_t *access_mask;
snd_pcm_access_mask_alloca (&access_mask);
snd_pcm_access_mask_none (access_mask);
snd_pcm_access_mask_set (access_mask, SND_PCM_ACCESS_RW_INTERLEAVED);
// snd_pcm_access_mask_set (access_mask, SND_PCM_ACCESS_RW_NONINTERLEAVED);
if ((error = snd_pcm_hw_params_set_access_mask (d_pcm_handle,
d_hw_params, access_mask)) < 0)
bail ("failed to set access mask", error);
// set sample format
if (!gri_alsa_pick_acceptable_format (d_pcm_handle, d_hw_params,
acceptable_formats,
NELEMS (acceptable_formats),
&d_format,
"audio_alsa_sink",
CHATTY_DEBUG))
throw std::runtime_error ("audio_alsa_sink");
// sampling rate
unsigned int orig_sampling_rate = d_sampling_rate;
if ((error = snd_pcm_hw_params_set_rate_near (d_pcm_handle, d_hw_params,
&d_sampling_rate, 0)) < 0)
bail ("failed to set rate near", error);
if (orig_sampling_rate != d_sampling_rate){
fprintf (stderr, "audio_alsa_sink[%s]: unable to support sampling rate %d\n",
snd_pcm_name (d_pcm_handle), orig_sampling_rate);
fprintf (stderr, " card requested %d instead.\n", d_sampling_rate);
}
/*
* ALSA transfers data in units of "periods".
* We indirectly determine the underlying buffersize by specifying
* the number of periods we want (typically 4) and the length of each
* period in units of time (typically 1ms).
*/
unsigned int min_nperiods, max_nperiods;
snd_pcm_hw_params_get_periods_min (d_hw_params, &min_nperiods, &dir);
snd_pcm_hw_params_get_periods_max (d_hw_params, &max_nperiods, &dir);
//fprintf (stderr, "alsa_sink: min_nperiods = %d, max_nperiods = %d\n",
// min_nperiods, max_nperiods);
unsigned int orig_nperiods = d_nperiods;
d_nperiods = std::min (std::max (min_nperiods, d_nperiods), max_nperiods);
// adjust period time so that total buffering remains more-or-less constant
d_period_time_us = (d_period_time_us * orig_nperiods) / d_nperiods;
error = snd_pcm_hw_params_set_periods (d_pcm_handle, d_hw_params,
d_nperiods, 0);
if (error < 0)
bail ("set_periods failed", error);
dir = 0;
error = snd_pcm_hw_params_set_period_time_near (d_pcm_handle, d_hw_params,
&d_period_time_us, &dir);
if (error < 0)
bail ("set_period_time_near failed", error);
dir = 0;
error = snd_pcm_hw_params_get_period_size (d_hw_params,
&d_period_size, &dir);
if (error < 0)
bail ("get_period_size failed", error);
set_output_multiple (d_period_size);
}
bool
audio_alsa_sink::check_topology (int ninputs, int noutputs)
{
// ninputs is how many channels the user has connected.
// Now we can finish up setting up the hw params...
int nchan = ninputs;
int err;
// FIXME check_topology may be called more than once.
// Ensure that the pcm is in a state where we can still mess with the hw_params
bool special_case = nchan == 1 && d_special_case_mono_to_stereo;
if (special_case)
nchan = 2;
err = snd_pcm_hw_params_set_channels (d_pcm_handle, d_hw_params, nchan);
if (err < 0){
output_error_msg ("set_channels failed", err);
return false;
}
// set the parameters into the driver...
err = snd_pcm_hw_params(d_pcm_handle, d_hw_params);
if (err < 0){
output_error_msg ("snd_pcm_hw_params failed", err);
return false;
}
// get current s/w params
err = snd_pcm_sw_params_current (d_pcm_handle, d_sw_params);
if (err < 0)
bail ("snd_pcm_sw_params_current", err);
// Tell the PCM device to wait to start until we've filled
// it's buffers half way full. This helps avoid audio underruns.
err = snd_pcm_sw_params_set_start_threshold(d_pcm_handle,
d_sw_params,
d_nperiods * d_period_size / 2);
if (err < 0)
bail ("snd_pcm_sw_params_set_start_threshold", err);
// store the s/w params
err = snd_pcm_sw_params (d_pcm_handle, d_sw_params);
if (err < 0)
bail ("snd_pcm_sw_params", err);
d_buffer_size_bytes =
d_period_size * nchan * snd_pcm_format_size (d_format, 1);
d_buffer = new char [d_buffer_size_bytes];
if (CHATTY_DEBUG)
fprintf (stdout, "audio_alsa_sink[%s]: sample resolution = %d bits\n",
snd_pcm_name (d_pcm_handle),
snd_pcm_hw_params_get_sbits (d_hw_params));
switch (d_format){
case SND_PCM_FORMAT_S16:
if (special_case)
d_worker = &audio_alsa_sink::work_s16_1x2;
else
d_worker = &audio_alsa_sink::work_s16;
break;
case SND_PCM_FORMAT_S32:
if (special_case)
d_worker = &audio_alsa_sink::work_s32_1x2;
else
d_worker = &audio_alsa_sink::work_s32;
break;
default:
assert (0);
}
return true;
}
audio_alsa_sink::~audio_alsa_sink ()
{
if (snd_pcm_state (d_pcm_handle) == SND_PCM_STATE_RUNNING)
snd_pcm_drop (d_pcm_handle);
snd_pcm_close(d_pcm_handle);
delete [] ((char *) d_hw_params);
delete [] ((char *) d_sw_params);
delete [] d_buffer;
}
int
audio_alsa_sink::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
assert ((noutput_items % d_period_size) == 0);
// this is a call through a pointer to a method...
return (this->*d_worker)(noutput_items, input_items, output_items);
}
/*
* Work function that deals with float to S16 conversion
*/
int
audio_alsa_sink::work_s16 (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
typedef gr_int16 sample_t; // the type of samples we're creating
static const int NBITS = 16; // # of bits in a sample
unsigned int nchan = input_items.size ();
const float **in = (const float **) &input_items[0];
sample_t *buf = (sample_t *) d_buffer;
int bi;
int n;
unsigned int sizeof_frame = nchan * sizeof (sample_t);
assert (d_buffer_size_bytes == d_period_size * sizeof_frame);
for (n = 0; n < noutput_items; n += d_period_size){
// process one period of data
bi = 0;
for (unsigned int i = 0; i < d_period_size; i++){
for (unsigned int chan = 0; chan < nchan; chan++){
buf[bi++] = (sample_t) (in[chan][i] * (float) ((1L << (NBITS-1)) - 1));
}
}
// update src pointers
for (unsigned int chan = 0; chan < nchan; chan++)
in[chan] += d_period_size;
if (!write_buffer (buf, d_period_size, sizeof_frame))
return -1; // No fixing this problem. Say we're done.
}
return n;
}
/*
* Work function that deals with float to S32 conversion
*/
int
audio_alsa_sink::work_s32 (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
typedef gr_int32 sample_t; // the type of samples we're creating
static const int NBITS = 32; // # of bits in a sample
unsigned int nchan = input_items.size ();
const float **in = (const float **) &input_items[0];
sample_t *buf = (sample_t *) d_buffer;
int bi;
int n;
unsigned int sizeof_frame = nchan * sizeof (sample_t);
assert (d_buffer_size_bytes == d_period_size * sizeof_frame);
for (n = 0; n < noutput_items; n += d_period_size){
// process one period of data
bi = 0;
for (unsigned int i = 0; i < d_period_size; i++){
for (unsigned int chan = 0; chan < nchan; chan++){
buf[bi++] = (sample_t) (in[chan][i] * (float) ((1L << (NBITS-1)) - 1));
}
}
// update src pointers
for (unsigned int chan = 0; chan < nchan; chan++)
in[chan] += d_period_size;
if (!write_buffer (buf, d_period_size, sizeof_frame))
return -1; // No fixing this problem. Say we're done.
}
return n;
}
/*
* Work function that deals with float to S16 conversion and
* mono to stereo kludge.
*/
int
audio_alsa_sink::work_s16_1x2 (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
typedef gr_int16 sample_t; // the type of samples we're creating
static const int NBITS = 16; // # of bits in a sample
assert (input_items.size () == 1);
static const unsigned int nchan = 2;
const float **in = (const float **) &input_items[0];
sample_t *buf = (sample_t *) d_buffer;
int bi;
int n;
unsigned int sizeof_frame = nchan * sizeof (sample_t);
assert (d_buffer_size_bytes == d_period_size * sizeof_frame);
for (n = 0; n < noutput_items; n += d_period_size){
// process one period of data
bi = 0;
for (unsigned int i = 0; i < d_period_size; i++){
sample_t t = (sample_t) (in[0][i] * (float) ((1L << (NBITS-1)) - 1));
buf[bi++] = t;
buf[bi++] = t;
}
// update src pointers
in[0] += d_period_size;
if (!write_buffer (buf, d_period_size, sizeof_frame))
return -1; // No fixing this problem. Say we're done.
}
return n;
}
/*
* Work function that deals with float to S32 conversion and
* mono to stereo kludge.
*/
int
audio_alsa_sink::work_s32_1x2 (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
typedef gr_int32 sample_t; // the type of samples we're creating
static const int NBITS = 32; // # of bits in a sample
assert (input_items.size () == 1);
static unsigned int nchan = 2;
const float **in = (const float **) &input_items[0];
sample_t *buf = (sample_t *) d_buffer;
int bi;
int n;
unsigned int sizeof_frame = nchan * sizeof (sample_t);
assert (d_buffer_size_bytes == d_period_size * sizeof_frame);
for (n = 0; n < noutput_items; n += d_period_size){
// process one period of data
bi = 0;
for (unsigned int i = 0; i < d_period_size; i++){
sample_t t = (sample_t) (in[0][i] * (float) ((1L << (NBITS-1)) - 1));
buf[bi++] = t;
buf[bi++] = t;
}
// update src pointers
in[0] += d_period_size;
if (!write_buffer (buf, d_period_size, sizeof_frame))
return -1; // No fixing this problem. Say we're done.
}
return n;
}
bool
audio_alsa_sink::write_buffer (const void *vbuffer,
unsigned nframes, unsigned sizeof_frame)
{
const unsigned char *buffer = (const unsigned char *) vbuffer;
while (nframes > 0){
int r = snd_pcm_writei (d_pcm_handle, buffer, nframes);
if (r == -EAGAIN)
continue; // try again
else if (r == -EPIPE){ // underrun
d_nunderuns++;
fputs ("aU", stderr);
if ((r = snd_pcm_prepare (d_pcm_handle)) < 0){
output_error_msg ("snd_pcm_prepare failed. Can't recover from underrun", r);
return false;
}
continue; // try again
}
else if (r == -ESTRPIPE){ // h/w is suspended (whatever that means)
// This is apparently related to power management
d_nsuspends++;
if ((r = snd_pcm_resume (d_pcm_handle)) < 0){
output_error_msg ("failed to resume from suspend", r);
return false;
}
continue; // try again
}
else if (r < 0){
output_error_msg ("snd_pcm_writei failed", r);
return false;
}
nframes -= r;
buffer += r * sizeof_frame;
}
return true;
}
void
audio_alsa_sink::output_error_msg (const char *msg, int err)
{
fprintf (stderr, "audio_alsa_sink[%s]: %s: %s\n",
snd_pcm_name (d_pcm_handle), msg, snd_strerror (err));
}
void
audio_alsa_sink::bail (const char *msg, int err) throw (std::runtime_error)
{
output_error_msg (msg, err);
throw std::runtime_error ("audio_alsa_sink");
}
|