1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/* -*- c++ -*- */
/*
* Copyright 2002 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <atsci_equalizer_lms.h>
#include <assert.h>
#include <algorithm>
#include <atsci_pnXXX.h>
#include <stdio.h>
using std::min;
using std::max;
static const int NTAPS = 256;
static const int NPRETAPS = (int) (NTAPS * 0.8); // probably should be either .2 or .8
// the length of the field sync pattern that we know unequivocally
static const int KNOWN_FIELD_SYNC_LENGTH = 4 + 511 + 3 * 63;
static const float *get_data_seg_sync_training_sequence (int offset);
static int get_field_sync_training_sequence_length (int offset);
static const float *get_field_sync_training_sequence (int which_field, int offset);
atsci_equalizer_lms::atsci_equalizer_lms () : d_taps (NTAPS)
{
for (int i = 0; i < NTAPS; i++) {
d_taps[i] = 0.0;
}
trainingfile=fopen("taps.txt","w");
}
atsci_equalizer_lms::~atsci_equalizer_lms ()
{
}
void
atsci_equalizer_lms::reset ()
{
atsci_equalizer::reset (); // invoke superclass
for (int i = 0; i < NTAPS; i++) {
d_taps[i] = 0.0;
}
}
int
atsci_equalizer_lms::ntaps () const
{
return NTAPS;
}
int
atsci_equalizer_lms::npretaps () const
{
return NPRETAPS;
}
/*!
* Input range is known NOT TO CONTAIN data segment syncs
* or field syncs. This should be the fast path. In the
* non decicion directed case, this just runs the input
* through the filter without adapting it.
*
* \p input_samples has (nsamples + ntaps() - 1) valid entries.
* input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be
* referenced to compute the output values.
*/
void
atsci_equalizer_lms::filter_normal (const float *input_samples,
float *output_samples,
int nsamples)
{
// handle data
filterN (input_samples, output_samples, nsamples);
}
/*!
* Input range is known to consist of only a data segment sync or a
* portion of a data segment sync. \p nsamples will be in [1,4].
* \p offset will be in [0,3]. \p offset is the offset of the input
* from the beginning of the data segment sync pattern.
*
* \p input_samples has (nsamples + ntaps() - 1) valid entries.
* input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be
* referenced to compute the output values.
*/
void
atsci_equalizer_lms::filter_data_seg_sync (const float *input_samples,
float *output_samples,
int nsamples,
int offset)
{
// handle data
// adaptN (input_samples, get_data_seg_sync_training_sequence (offset),
// output_samples, nsamples);
filterN (input_samples, output_samples, nsamples);
// cerr << "Seg Sync: offset " << offset << "\tnsamples\t" << nsamples << "\t pre, 5 -5 -5 5\t" <<
// output_samples[0] << "\t" << output_samples[1] << "\t" << output_samples[2] << "\t" << output_samples[3] << endl;
}
/*!
* Input range is known to consist of only a field sync segment or a
* portion of a field sync segment. \p nsamples will be in [1,832].
* \p offset will be in [0,831]. \p offset is the offset of the input
* from the beginning of the data segment sync pattern. We consider the
* 4 symbols of the immediately preceding data segment sync to be the
* first symbols of the field sync segment. \p which_field is in [0,1]
* and specifies which field (duh).
*
* \p input_samples has (nsamples + ntaps() - 1) valid entries.
* input_samples[0] .. input_samples[nsamples - 1 + ntaps() - 1] may be
* referenced to compute the output values.
*/
void
atsci_equalizer_lms::filter_field_sync (const float *input_samples,
float *output_samples,
int nsamples,
int offset,
int which_field)
{
// Only the first 4 + 511 + 3 * 63 symbols are completely defined.
// Those after that the symbols are bilevel, so we could use decision feedback and use
// that to train, but for now, don't train on them.
int n = min (nsamples, get_field_sync_training_sequence_length (offset));
// handle known training sequence
adaptN (input_samples, get_field_sync_training_sequence (which_field, offset),
output_samples, n);
// just filter any unknown portion
if (nsamples > n)
filterN (&input_samples[n], &output_samples[n], nsamples - n);
if (offset == 0 && nsamples > 0){
for (int i = 0; i < NTAPS; i++)
fprintf(trainingfile,"%f ",d_taps[i]);
fprintf (trainingfile,"\n");
}
}
// ----------------------------------------------------------------
//
// filter a single output
//
float
atsci_equalizer_lms::filter1 (const float input[])
{
static const int N_UNROLL = 4;
float acc0 = 0;
float acc1 = 0;
float acc2 = 0;
float acc3 = 0;
unsigned i = 0;
unsigned n = (NTAPS / N_UNROLL) * N_UNROLL;
for (i = 0; i < n; i += N_UNROLL){
acc0 += d_taps[i + 0] * input[i + 0];
acc1 += d_taps[i + 1] * input[i + 1];
acc2 += d_taps[i + 2] * input[i + 2];
acc3 += d_taps[i + 3] * input[i + 3];
}
for (; i < (unsigned) NTAPS; i++)
acc0 += d_taps[i] * input[i];
return (acc0 + acc1 + acc2 + acc3);
}
//
// filter and adapt a single output
//
float
atsci_equalizer_lms::adapt1 (const float input[], float ideal_output)
{
static const double BETA = 0.00005; // FIXME figure out what this ought to be
// FIXME add gear-shifting
double y = filter1 (input);
double e = y - ideal_output;
// update taps...
for (int i = 0; i < NTAPS; i++){
d_taps[i] = d_taps[i] - BETA * e * (double)(input[i]);
}
return y;
}
void
atsci_equalizer_lms::filterN (const float *input_samples,
float *output_samples,
int nsamples)
{
for (int i = 0; i < nsamples; i++)
output_samples[i] = filter1 (&input_samples[i]);
}
void
atsci_equalizer_lms::adaptN (const float *input_samples,
const float *training_pattern,
float *output_samples,
int nsamples)
{
for (int i = 0; i < nsamples; i++)
output_samples[i] = adapt1 (&input_samples[i], training_pattern[i]);
}
// ----------------------------------------------------------------
static float
bin_map (int bit)
{
return bit ? +5 : -5;
}
static void
init_field_sync_common (float *p, int mask)
{
int i = 0;
p[i++] = bin_map (1); // data segment sync pulse
p[i++] = bin_map (0);
p[i++] = bin_map (0);
p[i++] = bin_map (1);
for (int j = 0; j < 511; j++) // PN511
p[i++] = bin_map (atsc_pn511[j]);
for (int j = 0; j < 63; j++) // PN63
p[i++] = bin_map (atsc_pn63[j]);
for (int j = 0; j < 63; j++) // PN63, toggled on field 2
p[i++] = bin_map (atsc_pn63[j] ^ mask);
for (int j = 0; j < 63; j++) // PN63
p[i++] = bin_map (atsc_pn63[j]);
assert (i == KNOWN_FIELD_SYNC_LENGTH);
}
static const float *
get_data_seg_sync_training_sequence (int offset)
{
static const float training_data[4] = { +5, -5, -5, +5 };
return &training_data[offset];
}
static int
get_field_sync_training_sequence_length (int offset)
{
return max (0, KNOWN_FIELD_SYNC_LENGTH - offset);
}
static const float *
get_field_sync_training_sequence (int which_field, int offset)
{
static float *field_1 = 0;
static float *field_2 = 0;
if (field_1 == 0){
field_1 = new float[KNOWN_FIELD_SYNC_LENGTH];
field_2 = new float[KNOWN_FIELD_SYNC_LENGTH];
init_field_sync_common (field_1, 0);
init_field_sync_common (field_2, 1);
}
if (which_field == 0)
return &field_1[offset];
else
return &field_2[offset];
}
|