1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
/* -*- c++ -*- */
/*
* Copyright 2006 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <atsc_bit_timing_loop.h>
#include <gr_io_signature.h>
#include <atsc_consts.h>
float input_rate = 20e6;
double ratio_of_rx_clock_to_symbol_freq = input_rate / ATSC_SYMBOL_RATE;
atsc_bit_timing_loop_sptr
atsc_make_bit_timing_loop()
{
return atsc_bit_timing_loop_sptr(new atsc_bit_timing_loop());
}
atsc_bit_timing_loop::atsc_bit_timing_loop()
: gr_block("atsc_bit_timing_loop",
gr_make_io_signature(1, 1, sizeof(float)),
gr_make_io_signature(2, 2, sizeof(float))),
d_interp(ratio_of_rx_clock_to_symbol_freq), d_next_input(0),
d_rx_clock_to_symbol_freq (ratio_of_rx_clock_to_symbol_freq)
{
reset();
}
void
atsc_bit_timing_loop::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
unsigned ninputs = ninput_items_required.size();
for (unsigned i = 0; i < ninputs; i++)
ninput_items_required[i] = noutput_items * d_rx_clock_to_symbol_freq + 1500 - 1;
inputs0_size = noutput_items * d_rx_clock_to_symbol_freq + 1500 - 1;
inputs0_index = d_next_input;
}
int
atsc_bit_timing_loop::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int r = work (noutput_items, input_items, output_items);
if (r > 0)
consume_each (r * d_rx_clock_to_symbol_freq);
return r;
}
int
atsc_bit_timing_loop::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const float *in = (const float *) input_items[0];
float *out_sample = (float *) output_items[0];
atsc::syminfo *out_tag = (atsc::syminfo *) output_items[1];
assert(sizeof(float) == sizeof(atsc::syminfo));
// We are tasked with producing output.size output samples.
// We will consume approximately 2 * output.size input samples.
int si = 0; // source index
unsigned int k; // output index
float interp_sample;
int symbol_index;
double timing_adjustment = 0;
bool seg_locked;
atsc::syminfo tag;
memset (&tag, 0, sizeof (tag));
for (k = 0; k < noutput_items; k++){
if (!d_interp.update (in, inputs0_size, &si, timing_adjustment, &interp_sample)){
fprintf (stderr, "GrAtscBitTimingLoop3: ran short on data...\n");
break;
}
d_sssr.update (interp_sample, &seg_locked, &symbol_index, &timing_adjustment);
out_sample[k] = interp_sample;
tag.valid = seg_locked;
tag.symbol_num = symbol_index;
out_tag[k] = tag;
}
d_next_input += si; // update next_input so forecast can get us what we need
return k;
}
|