summaryrefslogtreecommitdiff
path: root/gr-atsc/src/lib/GrAtscFPLL.cc
blob: df7d6b8c08f77e00db9d31c8f71883bd5b462031 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* -*- c++ -*- */
/*
 * Copyright 2002 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#include <GrAtscFPLL.h>
#include <algorithm>
#include "fpll_btloop_coupling.h"

/*
 * I strongly suggest that you not mess with these...
 *
 * They are strongly coupled into the symbol timing code and
 * their value also sets the level of the symbols going
 * into the equalizer and viterbi decoder.
 */
static const float FPLL_AGC_REFERENCE = 2.5 * FPLL_BTLOOP_COUPLING_CONST;
static const float FPLL_AGC_RATE = 0.25e-6;


GrAtscFPLL::GrAtscFPLL (double a_initial_freq)
  : VrSigProc (1, sizeof (iType), sizeof (oType)),
    initial_phase(0), debug_no_update(false)
{
  initial_freq = a_initial_freq;
  agc.set_rate (FPLL_AGC_RATE);
  agc.set_reference (FPLL_AGC_REFERENCE);

  if (_FPLL_DIAG_OUTPUT_){
    fp = fopen ("fpll.out", "w");
    if (fp == 0){
      perror ("fpll.out");
      exit (1);
    }
  }

}

void
GrAtscFPLL::initialize ()
{
  float Fs = getInputSamplingFrequencyN (0);

  float alpha = 1 - exp(-1.0 / Fs / 5e-6);

  afci.set_taps (alpha);
  afcq.set_taps (alpha);

  nco.set_freq (initial_freq / Fs * 2 * M_PI);
  nco.set_phase (initial_phase);
}

int
GrAtscFPLL::work (VrSampleRange output, void *ao[],
		  VrSampleRange inputs[], void *ai[])
{
  iType	 *in = ((iType **)ai)[0];
  oType  *out = ((oType **)ao)[0];

  unsigned int	k;

  for (k = 0; k < output.size; k++){

    float a_cos, a_sin;

    float input = agc.scale (in[k]);

    nco.step ();		// increment phase
    nco.sincos (a_sin, a_cos);	// compute cos and sin

    float I = input * a_sin;
    float Q = input * a_cos;

    out[k] = I;

    float filtered_I = afci.filter (I);
    float filtered_Q = afcq.filter (Q);

    // phase detector

    float x = atan2 (filtered_Q, filtered_I);

    // avoid slamming filter with big transitions

    static const float limit = M_PI / 2;

    if (x > limit)
      x = limit;
    else if (x < -limit)
      x = -limit;

    // static const float alpha = 0.037;   // Max value
    // static const float alpha = 0.005;   // takes about 5k samples to pull in, stddev = 323
    // static const float alpha = 0.002;   // takes about 15k samples to pull in, stddev =  69
				           //  or about 120k samples on noisy data,
    static const float alpha = 0.001;
    static const float beta = alpha * alpha / 4;


    if (!debug_no_update){
      nco.adjust_phase (alpha * x);
      nco.adjust_freq (beta * x);
    }

    if (_FPLL_DIAG_OUTPUT_){
#if 0	// lots of data...
      float	iodata[8];
      iodata[0] = nco.get_freq () * getSamplingFrequency () * (1.0 / (2 * M_PI));
      iodata[1] = in[k];
      iodata[2] = input;
      iodata[3] = I;
      iodata[4] = Q;
      iodata[5] = filtered_I;
      iodata[6] = filtered_Q;
      iodata[7] = x;
      if (fwrite (iodata, sizeof (iodata), 1, fp) != 1){
	perror ("fwrite: fpll");
	exit (1);
      }
#else	// just the frequency
      float	iodata[1];
      iodata[0] = nco.get_freq () * getSamplingFrequency () * (1.0 / (2 * M_PI));
      if (fwrite (iodata, sizeof (iodata), 1, fp) != 1){
	perror ("fwrite: fpll");
	exit (1);
      }
#endif
    }
  }

  return output.size;
}