1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/* -*- c++ -*- */
/*
* Copyright 2004,2010,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/* @WARNING@ */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "@IMPL_NAME@.h"
#include <algorithm>
#include <gr_io_signature.h>
#include <stdexcept>
#include <algorithm>
#include <gr_complex.h>
namespace gr {
namespace analog {
@BASE_NAME@::sptr
@BASE_NAME@::make(double sampling_freq, gr_waveform_t waveform,
double frequency, double ampl, @TYPE@ offset)
{
return gnuradio::get_initial_sptr
(new @IMPL_NAME@(sampling_freq, waveform, frequency, ampl, offset));
}
@IMPL_NAME@::@IMPL_NAME@(double sampling_freq, gr_waveform_t waveform,
double frequency, double ampl, @TYPE@ offset)
: gr_sync_block("@BASE_NAME@",
gr_make_io_signature(0, 0, 0),
gr_make_io_signature(1, 1, sizeof(@TYPE@))),
d_sampling_freq(sampling_freq), d_waveform(waveform),
d_frequency(frequency), d_ampl(ampl), d_offset(offset)
{
d_nco.set_freq(2 * M_PI * d_frequency / d_sampling_freq);
}
@IMPL_NAME@::~@IMPL_NAME@()
{
}
int
@IMPL_NAME@::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
@TYPE@ *optr = (@TYPE@*)output_items[0];
@TYPE@ t;
switch(d_waveform) {
#if @IS_COMPLEX@ // complex?
case GR_CONST_WAVE:
t = (gr_complex) d_ampl + d_offset;
std::fill_n(optr, noutput_items, t);
break;
case GR_SIN_WAVE:
case GR_COS_WAVE:
d_nco.sincos(optr, noutput_items, d_ampl);
if(d_offset == gr_complex(0,0))
break;
for(int i = 0; i < noutput_items; i++) {
optr[i] += d_offset;
}
break;
/* Implements a real square wave high from -PI to 0.
* The imaginary square wave leads by 90 deg.
*/
case GR_SQR_WAVE:
for(int i = 0; i < noutput_items; i++) {
if(d_nco.get_phase() < -1*M_PI/2)
optr[i] = gr_complex(d_ampl, 0) + d_offset;
else if(d_nco.get_phase() < 0)
optr[i] = gr_complex(d_ampl, d_ampl) + d_offset;
else if(d_nco.get_phase() < M_PI/2)
optr[i] = gr_complex(0, d_ampl) + d_offset;
else
optr[i] = d_offset;
d_nco.step();
}
break;
/* Implements a real triangle wave rising from -PI to 0 and
* falling from 0 to PI. The imaginary triangle wave leads by
* 90 deg.
*/
case GR_TRI_WAVE:
for(int i = 0; i < noutput_items; i++) {
if(d_nco.get_phase() < -1*M_PI/2){
optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl,
-1*d_ampl*d_nco.get_phase()/M_PI - d_ampl/2) + d_offset;
}
else if(d_nco.get_phase() < 0) {
optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl,
d_ampl*d_nco.get_phase()/M_PI + d_ampl/2) + d_offset;
}
else if(d_nco.get_phase() < M_PI/2) {
optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl,
d_ampl*d_nco.get_phase()/M_PI + d_ampl/2) + d_offset;
}
else {
optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl,
-1*d_ampl*d_nco.get_phase()/M_PI + 3*d_ampl/2) + d_offset;
}
d_nco.step();
}
break;
/* Implements a real saw tooth wave rising from -PI to PI.
* The imaginary saw tooth wave leads by 90 deg.
*/
case GR_SAW_WAVE:
for(int i = 0; i < noutput_items; i++) {
if(d_nco.get_phase() < -1*M_PI/2) {
optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2,
d_ampl*d_nco.get_phase()/(2*M_PI) + 5*d_ampl/4) + d_offset;
}
else {
optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2,
d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/4) + d_offset;
}
d_nco.step();
}
break;
#else // nope...
case GR_CONST_WAVE:
t = (@TYPE@)d_ampl + d_offset;
std::fill_n(optr, noutput_items, t);
break;
case GR_SIN_WAVE:
d_nco.sin(optr, noutput_items, d_ampl);
if(d_offset == 0)
break;
for(int i = 0; i < noutput_items; i++) {
optr[i] += d_offset;
}
break;
case GR_COS_WAVE:
d_nco.cos(optr, noutput_items, d_ampl);
if(d_offset == 0)
break;
for(int i = 0; i < noutput_items; i++) {
optr[i] += d_offset;
}
break;
/* The square wave is high from -PI to 0. */
case GR_SQR_WAVE:
t = (@TYPE@)d_ampl + d_offset;
for(int i = 0; i < noutput_items; i++) {
if(d_nco.get_phase() < 0)
optr[i] = t;
else
optr[i] = d_offset;
d_nco.step();
}
break;
/* The triangle wave rises from -PI to 0 and falls from 0 to PI. */
case GR_TRI_WAVE:
for(int i = 0; i < noutput_items; i++) {
double t = d_ampl*d_nco.get_phase()/M_PI;
if (d_nco.get_phase() < 0)
optr[i] = static_cast<@TYPE@>(t + d_ampl + d_offset);
else
optr[i] = static_cast<@TYPE@>(-1*t + d_ampl + d_offset);
d_nco.step();
}
break;
/* The saw tooth wave rises from -PI to PI. */
case GR_SAW_WAVE:
for(int i = 0; i < noutput_items; i++) {
t = static_cast<@TYPE@>(d_ampl*d_nco.get_phase()/(2*M_PI)
+ d_ampl/2 + d_offset);
optr[i] = t;
d_nco.step();
}
break;
#endif
default:
throw std::runtime_error("gr_sig_source: invalid waveform");
}
return noutput_items;
}
void
@NAME@::set_sampling_freq(double sampling_freq)
{
d_sampling_freq = sampling_freq;
d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq);
}
void
@NAME@::set_waveform(gr_waveform_t waveform)
{
d_waveform = waveform;
}
void
@NAME@::set_frequency(double frequency)
{
d_frequency = frequency;
d_nco.set_freq(2 * M_PI * d_frequency / d_sampling_freq);
}
void
@NAME@::set_amplitude(double ampl)
{
d_ampl = ampl;
}
void
@NAME@::set_offset(@TYPE@ offset)
{
d_offset = offset;
}
} /* namespace analog */
} /* namespace gr */
|