1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
/* -*- c++ -*- */
/*
* Copyright 2006,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_ANALOG_AGC2_H
#define INCLUDED_ANALOG_AGC2_H
#include <analog/api.h>
#include <gr_complex.h>
#include <math.h>
namespace gr {
namespace analog {
namespace kernel {
/*!
* \brief high performance Automatic Gain Control class
*
* For Power the absolute value of the complex number is used.
*/
class ANALOG_API agc2_cc
{
public:
agc2_cc(float attack_rate = 1e-1, float decay_rate = 1e-2,
float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _attack_rate(attack_rate), _decay_rate(decay_rate),
_reference(reference),
_gain(gain), _max_gain(max_gain) {};
float decay_rate() const { return _decay_rate; }
float attack_rate() const { return _attack_rate; }
float reference() const { return _reference; }
float gain() const { return _gain; }
float max_gain() const { return _max_gain; }
void set_decay_rate(float rate) { _decay_rate = rate; }
void set_attack_rate(float rate) { _attack_rate = rate; }
void set_reference(float reference) { _reference = reference; }
void set_gain(float gain) { _gain = gain; }
void set_max_gain(float max_gain) { _max_gain = max_gain; }
gr_complex scale(gr_complex input)
{
gr_complex output = input * _gain;
float tmp = -_reference + sqrt(output.real()*output.real() +
output.imag()*output.imag());
float rate = _decay_rate;
if((tmp) > _gain) {
rate = _attack_rate;
}
_gain -= tmp*rate;
// Not sure about this; will blow up if _gain < 0 (happens
// when rates are too high), but is this the solution?
if(_gain < 0.0)
_gain = 10e-5;
if(_max_gain > 0.0 && _gain > _max_gain) {
_gain = _max_gain;
}
return output;
}
void scaleN(gr_complex output[], const gr_complex input[], unsigned n)
{
for(unsigned i = 0; i < n; i++)
output[i] = scale (input[i]);
}
protected:
float _attack_rate; // attack rate for fast changing signals
float _decay_rate; // decay rate for slow changing signals
float _reference; // reference value
float _gain; // current gain
float _max_gain; // max allowable gain
};
class ANALOG_API agc2_ff
{
public:
agc2_ff(float attack_rate = 1e-1, float decay_rate = 1e-2,
float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _attack_rate(attack_rate), _decay_rate(decay_rate),
_reference(reference),
_gain(gain), _max_gain(max_gain) {};
float attack_rate() const { return _attack_rate; }
float decay_rate() const { return _decay_rate; }
float reference() const { return _reference; }
float gain() const { return _gain; }
float max_gain() const { return _max_gain; }
void set_attack_rate(float rate) { _attack_rate = rate; }
void set_decay_rate(float rate) { _decay_rate = rate; }
void set_reference(float reference) { _reference = reference; }
void set_gain(float gain) { _gain = gain; }
void set_max_gain(float max_gain) { _max_gain = max_gain; }
float scale(float input)
{
float output = input * _gain;
float tmp = (fabsf(output)) - _reference;
float rate = _decay_rate;
if(fabsf(tmp) > _gain) {
rate = _attack_rate;
}
_gain -= tmp*rate;
// Not sure about this
if(_gain < 0.0)
_gain = 10e-5;
if(_max_gain > 0.0 && _gain > _max_gain) {
_gain = _max_gain;
}
return output;
}
void scaleN(float output[], const float input[], unsigned n)
{
for(unsigned i = 0; i < n; i++)
output[i] = scale (input[i]);
}
protected:
float _attack_rate; // attack_rate for fast changing signals
float _decay_rate; // decay rate for slow changing signals
float _reference; // reference value
float _gain; // current gain
float _max_gain; // maximum gain
};
} /* namespace kernel */
} /* namespace analog */
} /* namespace gr */
#endif /* INCLUDED_ANALOG_AGC2_H */
|