1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#!/usr/bin/env python
#
# Copyright 2005,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gru, eng_notation, optfir, window
from gnuradio import audio
from gnuradio import usrp
from gnuradio.eng_option import eng_option
from optparse import OptionParser
from usrpm import usrp_dbid
import sys
import math
import struct
class tune(gr.feval_dd):
"""
This class allows C++ code to callback into python.
"""
def __init__(self, tb):
gr.feval_dd.__init__(self)
self.tb = tb
def eval(self, ignore):
"""
This method is called from gr.bin_statistics_f when it wants to change
the center frequency. This method tunes the front end to the new center
frequency, and returns the new frequency as its result.
"""
try:
# We use this try block so that if something goes wrong from here
# down, at least we'll have a prayer of knowing what went wrong.
# Without this, you get a very mysterious:
#
# terminate called after throwing an instance of 'Swig::DirectorMethodException'
# Aborted
#
# message on stderr. Not exactly helpful ;)
new_freq = self.tb.set_next_freq()
return new_freq
except Exception, e:
print "tune: Exception: ", e
class parse_msg(object):
def __init__(self, msg):
self.center_freq = msg.arg1()
self.vlen = int(msg.arg2())
assert(msg.length() == self.vlen * gr.sizeof_float)
# FIXME consider using Numarray or NumPy vector
t = msg.to_string()
self.raw_data = t
self.data = struct.unpack('%df' % (self.vlen,), t)
class my_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
usage = "usage: %prog [options] min_freq max_freq"
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0,0),
help="select USRP Rx side A or B (default=A)")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="set gain in dB (default is midpoint)")
parser.add_option("", "--tune-delay", type="eng_float", default=1e-3, metavar="SECS",
help="time to delay (in seconds) after changing frequency [default=%default]")
parser.add_option("", "--dwell-delay", type="eng_float", default=10e-3, metavar="SECS",
help="time to dwell (in seconds) at a given frequncy [default=%default]")
parser.add_option("-F", "--fft-size", type="int", default=256,
help="specify number of FFT bins [default=%default]")
parser.add_option("-d", "--decim", type="intx", default=16,
help="set decimation to DECIM [default=%default]")
parser.add_option("", "--real-time", action="store_true", default=False,
help="Attempt to enable real-time scheduling")
parser.add_option("-B", "--fusb-block-size", type="int", default=0,
help="specify fast usb block size [default=%default]")
parser.add_option("-N", "--fusb-nblocks", type="int", default=0,
help="specify number of fast usb blocks [default=%default]")
(options, args) = parser.parse_args()
if len(args) != 2:
parser.print_help()
sys.exit(1)
self.min_freq = eng_notation.str_to_num(args[0])
self.max_freq = eng_notation.str_to_num(args[1])
if self.min_freq > self.max_freq:
self.min_freq, self.max_freq = self.max_freq, self.min_freq # swap them
self.fft_size = options.fft_size
if not options.real_time:
realtime = False
else:
# Attempt to enable realtime scheduling
r = gr.enable_realtime_scheduling()
if r == gr.RT_OK:
realtime = True
else:
realtime = False
print "Note: failed to enable realtime scheduling"
# If the user hasn't set the fusb_* parameters on the command line,
# pick some values that will reduce latency.
if 1:
if options.fusb_block_size == 0 and options.fusb_nblocks == 0:
if realtime: # be more aggressive
options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16)
else:
options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16)
#print "fusb_block_size =", options.fusb_block_size
#print "fusb_nblocks =", options.fusb_nblocks
# build graph
self.u = usrp.source_c(fusb_block_size=options.fusb_block_size,
fusb_nblocks=options.fusb_nblocks)
adc_rate = self.u.adc_rate() # 64 MS/s
usrp_decim = options.decim
self.u.set_decim_rate(usrp_decim)
usrp_rate = adc_rate / usrp_decim
self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
print "Using RX d'board %s" % (self.subdev.side_and_name(),)
s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
mywindow = window.blackmanharris(self.fft_size)
fft = gr.fft_vcc(self.fft_size, True, mywindow)
power = 0
for tap in mywindow:
power += tap*tap
c2mag = gr.complex_to_mag_squared(self.fft_size)
# FIXME the log10 primitive is dog slow
log = gr.nlog10_ff(10, self.fft_size,
-20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))
# Set the freq_step to 75% of the actual data throughput.
# This allows us to discard the bins on both ends of the spectrum.
self.freq_step = 0.75 * usrp_rate
self.min_center_freq = self.min_freq + self.freq_step/2
nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)
self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)
self.next_freq = self.min_center_freq
tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames
dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames
self.msgq = gr.msg_queue(16)
self._tune_callback = tune(self) # hang on to this to keep it from being GC'd
stats = gr.bin_statistics_f(self.fft_size, self.msgq,
self._tune_callback, tune_delay, dwell_delay)
# FIXME leave out the log10 until we speed it up
#self.connect(self.u, s2v, fft, c2mag, log, stats)
self.connect(self.u, s2v, fft, c2mag, stats)
if options.gain is None:
# if no gain was specified, use the mid-point in dB
g = self.subdev.gain_range()
options.gain = float(g[0]+g[1])/2
self.set_gain(options.gain)
print "gain =", options.gain
def set_next_freq(self):
target_freq = self.next_freq
self.next_freq = self.next_freq + self.freq_step
if self.next_freq >= self.max_center_freq:
self.next_freq = self.min_center_freq
if not self.set_freq(target_freq):
print "Failed to set frequency to", target_freq
return target_freq
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital down converter.
"""
return self.u.tune(0, self.subdev, target_freq)
def set_gain(self, gain):
self.subdev.set_gain(gain)
def main_loop(tb):
while 1:
# Get the next message sent from the C++ code (blocking call).
# It contains the center frequency and the mag squared of the fft
m = parse_msg(tb.msgq.delete_head())
# Print center freq so we know that something is happening...
print m.center_freq
# FIXME do something useful with the data...
# m.data are the mag_squared of the fft output (they are in the
# standard order. I.e., bin 0 == DC.)
# You'll probably want to do the equivalent of "fftshift" on them
# m.raw_data is a string that contains the binary floats.
# You could write this as binary to a file.
if __name__ == '__main__':
tb = my_top_block()
try:
tb.start() # start executing flow graph in another thread...
main_loop(tb)
except KeyboardInterrupt:
pass
|