1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
#!/usr/bin/env python
#
# Copyright 2005 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import math
import sys
import wx
from optparse import OptionParser
from gnuradio import gr, gru, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from gnuradio.wxgui import stdgui, fftsink, scopesink, slider, form
from usrpm import usrp_dbid
from numpy import convolve, array
#import os
#print "pid =", os.getpid()
#raw_input('Press Enter to continue: ')
# ////////////////////////////////////////////////////////////////////////
# Control Stuff
# ////////////////////////////////////////////////////////////////////////
class ptt_graph(stdgui.gui_flow_graph):
def __init__(self, frame, panel, vbox, argv):
stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
self.frame = frame
self.space_bar_pressed = False
parser = OptionParser (option_class=eng_option)
parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,
help="select USRP Rx side A or B")
parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
help="select USRP Tx side A or B")
parser.add_option ("-f", "--freq", type="eng_float", default=442.1e6,
help="set Tx and Rx frequency to FREQ", metavar="FREQ")
parser.add_option ("-g", "--rx-gain", type="eng_float", default=None,
help="set rx gain [default=midpoint in dB]")
parser.add_option("-I", "--audio-input", type="string", default="",
help="pcm input device name. E.g., hw:0,0 or /dev/dsp")
parser.add_option("-O", "--audio-output", type="string", default="",
help="pcm output device name. E.g., hw:0,0 or /dev/dsp")
parser.add_option ("-N", "--no-gui", action="store_true", default=False)
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help()
sys.exit(1)
if options.freq < 1e6:
options.freq *= 1e6
self.txpath = transmit_path(self, options.tx_subdev_spec, options.audio_input)
self.rxpath = receive_path(self, options.rx_subdev_spec, options.rx_gain, options.audio_output)
self._build_gui(frame, panel, vbox, argv, options.no_gui)
self.set_transmit(False)
self.set_freq(options.freq)
self.set_rx_gain(self.rxpath.gain) # update gui
self.set_volume(self.rxpath.volume) # update gui
self.set_squelch(self.rxpath.threshold()) # update gui
def set_transmit(self, enabled):
self.txpath.set_enable(enabled)
self.rxpath.set_enable(not(enabled))
if enabled:
self.frame.SetStatusText ("Transmitter ON", 1)
else:
self.frame.SetStatusText ("Receiver ON", 1)
def set_rx_gain(self, gain):
self.myform['rx_gain'].set_value(gain) # update displayed value
self.rxpath.set_gain(gain)
def set_tx_gain(self, gain):
self.txpath.set_gain(gain)
def set_squelch(self, threshold):
self.rxpath.set_squelch(threshold)
self.myform['squelch'].set_value(self.rxpath.threshold())
def set_volume (self, vol):
self.rxpath.set_volume(vol)
self.myform['volume'].set_value(self.rxpath.volume)
#self.update_status_bar ()
def set_freq(self, freq):
r1 = self.txpath.set_freq(freq)
r2 = self.rxpath.set_freq(freq)
#print "txpath.set_freq =", r1
#print "rxpath.set_freq =", r2
if r1 and r2:
self.myform['freq'].set_value(freq) # update displayed value
return r1 and r2
def _build_gui(self, frame, panel, vbox, argv, no_gui):
def _form_set_freq(kv):
return self.set_freq(kv['freq'])
self.panel = panel
# FIXME This REALLY needs to be replaced with a hand-crafted button
# that sends both button down and button up events
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((10,0), 1)
self.status_msg = wx.StaticText(panel, -1, "Press Space Bar to Transmit")
of = self.status_msg.GetFont()
self.status_msg.SetFont(wx.Font(15, of.GetFamily(), of.GetStyle(), of.GetWeight()))
hbox.Add(self.status_msg, 0, wx.ALIGN_CENTER)
hbox.Add((10,0), 1)
vbox.Add(hbox, 0, wx.EXPAND | wx.ALIGN_CENTER)
panel.Bind(wx.EVT_KEY_DOWN, self._on_key_down)
panel.Bind(wx.EVT_KEY_UP, self._on_key_up)
panel.Bind(wx.EVT_KILL_FOCUS, self._on_kill_focus)
panel.SetFocus()
if 1 and not(no_gui):
rx_fft = fftsink.fft_sink_c (self, panel, title="Rx Input", fft_size=512,
sample_rate=self.rxpath.if_rate,
ref_level=80, y_per_div=20)
self.connect (self.rxpath.u, rx_fft)
vbox.Add (rx_fft.win, 1, wx.EXPAND)
if 1 and not(no_gui):
rx_fft = fftsink.fft_sink_c (self, panel, title="Post s/w DDC",
fft_size=512, sample_rate=self.rxpath.quad_rate,
ref_level=80, y_per_div=20)
self.connect (self.rxpath.ddc, rx_fft)
vbox.Add (rx_fft.win, 1, wx.EXPAND)
if 0 and not(no_gui):
foo = scopesink.scope_sink_f (self, panel, title="Squelch",
sample_rate=32000)
self.connect (self.rxpath.fmrx.div, (foo,0))
self.connect (self.rxpath.fmrx.gate, (foo,1))
self.connect (self.rxpath.fmrx.squelch_lpf, (foo,2))
vbox.Add (foo.win, 1, wx.EXPAND)
if 0 and not(no_gui):
tx_fft = fftsink.fft_sink_c (self, panel, title="Tx Output",
fft_size=512, sample_rate=self.txpath.usrp_rate)
self.connect (self.txpath.amp, tx_fft)
vbox.Add (tx_fft.win, 1, wx.EXPAND)
# add control area at the bottom
self.myform = myform = form.form()
# first row
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((5,0), 0, 0)
myform['freq'] = form.float_field(
parent=panel, sizer=hbox, label="Freq", weight=1,
callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
hbox.Add((5,0), 0, 0)
vbox.Add(hbox, 0, wx.EXPAND)
# second row
hbox = wx.BoxSizer(wx.HORIZONTAL)
myform['volume'] = \
form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Volume",
weight=3, range=self.rxpath.volume_range(),
callback=self.set_volume)
hbox.Add((5,0), 0)
myform['squelch'] = \
form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Squelch",
weight=3, range=self.rxpath.squelch_range(),
callback=self.set_squelch)
hbox.Add((5,0), 0)
myform['rx_gain'] = \
form.quantized_slider_field(parent=self.panel, sizer=hbox, label="Rx Gain",
weight=3, range=self.rxpath.subdev.gain_range(),
callback=self.set_rx_gain)
hbox.Add((5,0), 0)
vbox.Add(hbox, 0, wx.EXPAND)
self._build_subpanel(vbox)
def _build_subpanel(self, vbox_arg):
# build a secondary information panel (sometimes hidden)
# FIXME figure out how to have this be a subpanel that is always
# created, but has its visibility controlled by foo.Show(True/False)
#if not(self.show_debug_info):
# return
panel = self.panel
vbox = vbox_arg
myform = self.myform
#panel = wx.Panel(self.panel, -1)
#vbox = wx.BoxSizer(wx.VERTICAL)
hbox = wx.BoxSizer(wx.HORIZONTAL)
hbox.Add((5,0), 0)
#myform['decim'] = form.static_float_field(
# parent=panel, sizer=hbox, label="Decim")
#hbox.Add((5,0), 1)
#myform['fs@usb'] = form.static_float_field(
# parent=panel, sizer=hbox, label="Fs@USB")
#hbox.Add((5,0), 1)
#myform['dbname'] = form.static_text_field(
# parent=panel, sizer=hbox)
hbox.Add((5,0), 0)
vbox.Add(hbox, 0, wx.EXPAND)
def _set_status_msg(self, msg, which=0):
self.frame.GetStatusBar().SetStatusText(msg, which)
def _on_key_down(self, evt):
# print "key_down:", evt.m_keyCode
if evt.m_keyCode == wx.WXK_SPACE and not(self.space_bar_pressed):
self.space_bar_pressed = True
self.set_transmit(True)
def _on_key_up(self, evt):
# print "key_up", evt.m_keyCode
if evt.m_keyCode == wx.WXK_SPACE:
self.space_bar_pressed = False
self.set_transmit(False)
def _on_kill_focus(self, evt):
# if we lose the keyboard focus, turn off the transmitter
self.space_bar_pressed = False
self.set_transmit(False)
# ////////////////////////////////////////////////////////////////////////
# Transmit Path
# ////////////////////////////////////////////////////////////////////////
class transmit_path(gr.hier_block):
def __init__(self, fg, subdev_spec, audio_input):
self.u = usrp.sink_c ()
dac_rate = self.u.dac_rate();
self.if_rate = 320e3 # 320 kS/s
self.usrp_interp = int(dac_rate // self.if_rate)
self.u.set_interp_rate(self.usrp_interp)
self.sw_interp = 10
self.audio_rate = self.if_rate // self.sw_interp # 32 kS/s
self.audio_gain = 10
self.normal_gain = 32000
self.audio = audio.source(int(self.audio_rate), audio_input)
self.audio_amp = gr.multiply_const_ff(self.audio_gain)
lpf = gr.firdes.low_pass (1, # gain
self.audio_rate, # sampling rate
3800, # low pass cutoff freq
300, # width of trans. band
gr.firdes.WIN_HANN) # filter type
hpf = gr.firdes.high_pass (1, # gain
self.audio_rate, # sampling rate
325, # low pass cutoff freq
50, # width of trans. band
gr.firdes.WIN_HANN) # filter type
audio_taps = convolve(array(lpf),array(hpf))
self.audio_filt = gr.fir_filter_fff(1,audio_taps)
self.pl = blks.ctcss_gen_f(fg, self.audio_rate,123.0)
self.add_pl = gr.add_ff()
fg.connect(self.pl,(self.add_pl,1))
self.fmtx = blks.nbfm_tx(fg, self.audio_rate, self.if_rate)
self.amp = gr.multiply_const_cc (self.normal_gain)
# determine the daughterboard subdevice we're using
if subdev_spec is None:
subdev_spec = usrp.pick_tx_subdevice(self.u)
self.u.set_mux(usrp.determine_tx_mux_value(self.u, subdev_spec))
self.subdev = usrp.selected_subdev(self.u, subdev_spec)
print "TX using", self.subdev.name()
fg.connect(self.audio, self.audio_amp, self.audio_filt,
(self.add_pl,0), self.fmtx, self.amp, self.u)
gr.hier_block.__init__(self, fg, None, None)
self.set_gain(self.subdev.gain_range()[1]) # set max Tx gain
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter. Finally, we feed
any residual_freq to the s/w freq translater.
"""
r = self.u.tune(self.subdev._which, self.subdev, target_freq)
if r:
# Use residual_freq in s/w freq translator
return True
return False
def set_gain(self, gain):
self.gain = gain
self.subdev.set_gain(gain)
def set_enable(self, enable):
self.subdev.set_enable(enable) # set H/W Tx enable
if enable:
self.amp.set_k (self.normal_gain)
else:
self.amp.set_k (0)
# ////////////////////////////////////////////////////////////////////////
# Receive Path
# ////////////////////////////////////////////////////////////////////////
class receive_path(gr.hier_block):
def __init__(self, fg, subdev_spec, gain, audio_output):
self.u = usrp.source_c ()
adc_rate = self.u.adc_rate()
self.if_rate = 256e3 # 256 kS/s
usrp_decim = int(adc_rate // self.if_rate)
if_decim = 4
self.u.set_decim_rate(usrp_decim)
self.quad_rate = self.if_rate // if_decim # 64 kS/s
audio_decim = 2
audio_rate = self.quad_rate // audio_decim # 32 kS/s
if subdev_spec is None:
subdev_spec = usrp.pick_rx_subdevice(self.u)
self.subdev = usrp.selected_subdev(self.u, subdev_spec)
print "RX using", self.subdev.name()
self.u.set_mux(usrp.determine_rx_mux_value(self.u, subdev_spec))
# Create filter to get actual channel we want
chan_coeffs = gr.firdes.low_pass (1.0, # gain
self.if_rate, # sampling rate
13e3, # low pass cutoff freq
4e3, # width of trans. band
gr.firdes.WIN_HANN) # filter type
print "len(rx_chan_coeffs) =", len(chan_coeffs)
# Decimating Channel filter with frequency translation
# complex in and out, float taps
self.ddc = gr.freq_xlating_fir_filter_ccf(if_decim, # decimation rate
chan_coeffs, # taps
0, # frequency translation amount
self.if_rate) # input sample rate
# instantiate the guts of the single channel receiver
self.fmrx = blks.nbfm_rx(fg, audio_rate, self.quad_rate)
# standard squelch block
self.squelch = blks.standard_squelch(fg, audio_rate)
# audio gain / mute block
self._audio_gain = gr.multiply_const_ff(1.0)
# sound card as final sink
audio_sink = audio.sink (int(audio_rate), audio_output)
# now wire it all together
fg.connect (self.u, self.ddc, self.fmrx, self.squelch, self._audio_gain, audio_sink)
gr.hier_block.__init__(self, fg, self.u, audio_sink)
if gain is None:
# if no gain was specified, use the mid-point in dB
g = self.subdev.gain_range()
gain = float(g[0]+g[1])/2
self.enabled = True
self.set_gain(gain)
v = self.volume_range()
self.set_volume((v[0]+v[1])/2)
s = self.squelch_range()
self.set_squelch((s[0]+s[1])/2)
def volume_range(self):
return (-20.0, 0.0, 0.5)
def set_volume (self, vol):
g = self.volume_range()
self.volume = max(g[0], min(g[1], vol))
self._update_audio_gain()
def set_enable(self, enable):
self.enabled = enable
self._update_audio_gain()
def _update_audio_gain(self):
if self.enabled:
self._audio_gain.set_k(10**(self.volume/10))
else:
self._audio_gain.set_k(0)
def squelch_range(self):
return self.squelch.squelch_range()
def set_squelch(self, threshold):
print "SQL =", threshold
self.squelch.set_threshold(threshold)
def threshold(self):
return self.squelch.threshold()
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital down converter in the
FPGA. Finally, we feed any residual_freq to the s/w freq
translator.
"""
r = self.u.tune(0, self.subdev, target_freq)
if r:
# Use residual_freq in s/w freq translater
# print "residual_freq =", r.residual_freq
self.ddc.set_center_freq(-r.residual_freq)
return True
return False
def set_gain(self, gain):
self.gain = gain
self.subdev.set_gain(gain)
# ////////////////////////////////////////////////////////////////////////
# Main
# ////////////////////////////////////////////////////////////////////////
def main():
app = stdgui.stdapp(ptt_graph, "NBFM Push to Talk")
app.MainLoop()
if __name__ == '__main__':
main()
|