summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/usrp/tvrx_am_rcv_gui.py
blob: e4ad36931e71ef32ea54ea736405acd0ab0995ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python
#
# Copyright 2004 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA 02111-1307, USA.
# 
#
# Demodulate an AM signal from the TVRX or a recorded file.
# The file format must be 256 ksps, complex data.
#

from gnuradio import gr, gru, eng_notation
from gnuradio import audio_oss as audio
from gnuradio import usrp
from gnuradio import tv_rx
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
from gnuradio.wxgui import stdgui, fftsink, scopesink
import wx

#
# return a gr.flow_graph
#
class wfm_rx_graph (stdgui.gui_flow_graph):
  def __init__(self,frame,panel,vbox,argv):
    stdgui.gui_flow_graph.__init__ (self,frame,panel,vbox,argv)
    
    #set rf freq
    rf_freq = 120.e6
    
    # Decimation rate from USRP ADC to IF.
    usrp_decim = 100
    
    # Calculate the sampling rate of the USRP and capture file.
    # Decimate the IF sampling rate down by 4 to 64 ksps
    # This is a flow graph that has an input (capture file) and output (audio channel).
    #self = gr.flow_graph ()
  
    # Signal source is assumed to be 256 kspb / complex data stream.
    which_side = 0
    # usrp is data source
    if which_side == 0:
        src = usrp.source_c (0, usrp_decim, 1, gru.hexint(0xf0f0f0f0), 0)
    else:
        src = usrp.source_c (0, usrp_decim, 1, gru.hexint(0xf0f0f0f2), 0)

    if_rate = 640e3 # src.adc_freq() / usrp_decim
    if_decim = 5
    demod_rate = if_rate / if_decim
    
    audio_decimation = 4
    audio_rate = demod_rate / audio_decimation

    # set up frontend
    dboard = tv_rx.tv_rx (src, which_side)
    self.dboard = dboard
    (success, actual_freq) = dboard.set_freq(rf_freq)
    assert success

    if_freq = rf_freq - actual_freq
    src.set_rx_freq (0, -if_freq)

    print "actual freq ", actual_freq
    print "IF freq ", if_freq
        
    dboard.set_gain(50)
    
    #src = gr.file_source (gr.sizeof_gr_complex, "samples/atis_ffz_am_baseband_256k_complex.dat")
    #src = gr.file_source (gr.sizeof_gr_complex, "samples/garagedoor1.dat", True)
    
    #channel_coeffs = gr.firdes.band_pass (
    #    1.0,    # gain
    #    if_rate,
    #    10,   # center of low transition band
    #    10000,   # center of hi transition band
    #    200,    # width of transition band
    #    gr.firdes.WIN_HAMMING)
    
    channel_coeffs = gr.firdes.low_pass (1.0, if_rate, 10e3, 4e3, gr.firdes.WIN_HANN)
    print "len(channel_coeffs) = ", len(channel_coeffs)

    # Tune to the desired frequency.
    ddc = gr.freq_xlating_fir_filter_ccf (if_decim, channel_coeffs, -20e3, if_rate)

    # Demodule with classic sqrt (I*I + Q*Q)
    magblock = gr.complex_to_mag()

    # Scale the audio
    volumecontrol = gr.multiply_const_ff(.1)

    #band-pass
    audio_coeffs = gr.firdes.band_pass (
        1.0,    # gain
        demod_rate,
        10,   # center of low transition band
        6000,   # center of hi transition band
        200,    # width of transition band
        gr.firdes.WIN_HAMMING)
    
    
    # Low pass filter the demodulator output
    #audio_coeffs = gr.firdes.low_pass (1.0, demod_rate, 500, 200, gr.firdes.WIN_HANN)
    print "len(audio_coeffs) = ", len(audio_coeffs)

    # input: float; output: float
    audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)

    # sound card as final sink
    audio_sink = audio.sink (int (audio_rate))

    # now wire it all together
    self.connect (src, ddc)
    self.connect (ddc, magblock)
    self.connect (magblock, volumecontrol)
    self.connect (volumecontrol, audio_filter)
    self.connect (audio_filter, (audio_sink, 0))
    
    d_win = fftsink.fft_sink_c (self, panel, title="RF", fft_size=512, sample_rate=if_rate)
    self.connect (src,d_win)
    vbox.Add (d_win.win, 4, wx.EXPAND)
       
    p_win = fftsink.fft_sink_c (self, panel, title="IF", fft_size=512, sample_rate=demod_rate)
    self.connect (ddc,p_win)
    vbox.Add (p_win.win, 4, wx.EXPAND)
       
    r_win = fftsink.fft_sink_f (self, panel, title="Audio", fft_size=512, sample_rate=audio_rate)
    self.connect (audio_filter,r_win)
    vbox.Add (r_win.win, 4, wx.EXPAND)
    
    #audio_oscope = scopesink.scope_sink_f (self, panel, "Oscope Data", audio_rate)
    #self.connect (audio_filter, audio_oscope)
    #vbox.Add (audio_oscope.win, 4, wx.EXPAND) 
                
if __name__ == '__main__':
    
    app = stdgui.stdapp (wfm_rx_graph, "TVRX AM RX")
    app.MainLoop ()