1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
#!/usr/bin/env python
#
# Copyright 2005,2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
"""
Transmit 2 signals, one out each daughterboard.
Outputs SSB (USB) signals on side A and side B at frequencies
specified on command line.
Side A is 600 Hz tone.
Side B is 350 + 440 Hz tones.
"""
from gnuradio import gr
from gnuradio.eng_notation import num_to_str, str_to_num
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks2
from gnuradio.eng_option import eng_option
from optparse import OptionParser
from usrpm import usrp_dbid
import math
import sys
class example_signal_0(gr.hier_block2):
"""
Sinusoid at 600 Hz.
"""
def __init__(self, sample_rate):
gr.hier_block2.__init__(self, "example_signal_0",
gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
src = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
600, # frequency
1.0, # amplitude
0) # DC Offset
self.connect(src, self)
class example_signal_1(gr.hier_block2):
"""
North American dial tone (350 + 440 Hz).
"""
def __init__(self, sample_rate):
gr.hier_block2.__init__(self, "example_signal_1",
gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
src0 = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
350, # frequency
1.0, # amplitude
0) # DC Offset
src1 = gr.sig_source_c (sample_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
440, # frequency
1.0, # amplitude
0) # DC Offset
sum = gr.add_cc()
self.connect(src0, (sum, 0))
self.connect(src1, (sum, 1))
self.connect(sum, self)
class my_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
usage="%prog: [options] side-A-tx-freq side-B-tx-freq"
parser = OptionParser (option_class=eng_option, usage=usage)
(options, args) = parser.parse_args ()
if len(args) != 2:
parser.print_help()
raise SystemExit
else:
freq0 = str_to_num(args[0])
freq1 = str_to_num(args[1])
# ----------------------------------------------------------------
# Set up USRP to transmit on both daughterboards
self.u = usrp.sink_c(nchan=2) # say we want two channels
self.dac_rate = self.u.dac_rate() # 128 MS/s
self.usrp_interp = 400
self.u.set_interp_rate(self.usrp_interp)
self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
# we're using both daughterboard slots, thus subdev is a 2-tuple
self.subdev = (self.u.db(0, 0), self.u.db(1, 0))
print "Using TX d'board %s" % (self.subdev[0].side_and_name(),)
print "Using TX d'board %s" % (self.subdev[1].side_and_name(),)
# set up the Tx mux so that
# channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q
self.u.set_mux(0xba98)
self.subdev[0].set_gain(self.subdev[0].gain_range()[1]) # set max Tx gain
self.subdev[1].set_gain(self.subdev[1].gain_range()[1]) # set max Tx gain
self.set_freq(0, freq0)
self.set_freq(1, freq1)
self.subdev[0].set_enable(True) # enable transmitter
self.subdev[1].set_enable(True) # enable transmitter
# ----------------------------------------------------------------
# build two signal sources, interleave them, amplify and connect them to usrp
sig0 = example_signal_0(self.usrp_rate)
sig1 = example_signal_1(self.usrp_rate)
intl = gr.interleave(gr.sizeof_gr_complex)
self.connect(sig0, (intl, 0))
self.connect(sig1, (intl, 1))
# apply some gain
if_gain = 10000
ifamp = gr.multiply_const_cc(if_gain)
# and wire them up
self.connect(intl, ifamp, self.u)
def set_freq(self, side, target_freq):
"""
Set the center frequency we're interested in.
@param side: 0 = side A, 1 = side B
@param target_freq: frequency in Hz
@rtype: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter.
"""
print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq))
r = self.u.tune(self.subdev[side].which(), self.subdev[side], target_freq)
if r:
print " r.baseband_freq =", num_to_str(r.baseband_freq)
print " r.dxc_freq =", num_to_str(r.dxc_freq)
print " r.residual_freq =", num_to_str(r.residual_freq)
print " r.inverted =", r.inverted
print " OK"
return True
else:
print " Failed!"
return False
if __name__ == '__main__':
try:
my_top_block().run()
except KeyboardInterrupt:
pass
|