1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#!/usr/bin/env python
#
# Copyright 2005,2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
"""
Transmit N simultaneous narrow band FM signals.
They will be centered at the frequency specified on the command line,
and will spaced at 25kHz steps from there.
The program opens N files with names audio-N.dat where N is in [0,7].
These files should contain floating point audio samples in the range [-1,1]
sampled at 32kS/sec. You can create files like this using
audio_to_file.py
"""
from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks2
from gnuradio.eng_option import eng_option
from optparse import OptionParser
from usrpm import usrp_dbid
import math
import sys
from gnuradio.wxgui import stdgui2, fftsink2
#from gnuradio import tx_debug_gui
import wx
########################################################
# instantiate one transmit chain for each call
class pipeline(gr.hier_block2):
def __init__(self, filename, lo_freq, audio_rate, if_rate):
gr.hier_block2.__init__(self, "pipeline",
gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
src = gr.file_source (gr.sizeof_float, filename, True)
fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6)
# Local oscillator
lo = gr.sig_source_c (if_rate, # sample rate
gr.GR_SIN_WAVE, # waveform type
lo_freq, #frequency
1.0, # amplitude
0) # DC Offset
mixer = gr.multiply_cc ()
self.connect (src, fmtx, (mixer, 0))
self.connect (lo, (mixer, 1))
self.connect (mixer, self)
class fm_tx_block(stdgui2.std_top_block):
def __init__(self, frame, panel, vbox, argv):
MAX_CHANNELS = 7
stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)
parser = OptionParser (option_class=eng_option)
parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
help="select USRP Tx side A or B")
parser.add_option("-f", "--freq", type="eng_float", default=None,
help="set Tx frequency to FREQ [required]", metavar="FREQ")
parser.add_option("-n", "--nchannels", type="int", default=4,
help="number of Tx channels [1,4]")
#parser.add_option("","--debug", action="store_true", default=False,
# help="Launch Tx debugger")
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help()
sys.exit(1)
if options.nchannels < 1 or options.nchannels > MAX_CHANNELS:
sys.stderr.write ("fm_tx4: nchannels out of range. Must be in [1,%d]\n" % MAX_CHANNELS)
sys.exit(1)
if options.freq is None:
sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n")
parser.print_help()
sys.exit(1)
# ----------------------------------------------------------------
# Set up constants and parameters
self.u = usrp.sink_c () # the USRP sink (consumes samples)
self.dac_rate = self.u.dac_rate() # 128 MS/s
self.usrp_interp = 400
self.u.set_interp_rate(self.usrp_interp)
self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
self.sw_interp = 10
self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s
# determine the daughterboard subdevice we're using
if options.tx_subdev_spec is None:
options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)
m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec)
#print "mux = %#04x" % (m,)
self.u.set_mux(m)
self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
print "Using TX d'board %s" % (self.subdev.side_and_name(),)
self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx gain
if not self.set_freq(options.freq):
freq_range = self.subdev.freq_range()
print "Failed to set frequency to %s. Daughterboard supports %s to %s" % (
eng_notation.num_to_str(options.freq),
eng_notation.num_to_str(freq_range[0]),
eng_notation.num_to_str(freq_range[1]))
raise SystemExit
self.subdev.set_enable(True) # enable transmitter
sum = gr.add_cc ()
# Instantiate N NBFM channels
step = 25e3
offset = (0 * step, 1 * step, -1 * step, 2 * step, -2 * step, 3 * step, -3 * step)
for i in range (options.nchannels):
t = pipeline("audio-%d.dat" % (i % 4), offset[i],
self.audio_rate, self.usrp_rate)
self.connect(t, (sum, i))
gain = gr.multiply_const_cc (4000.0 / options.nchannels)
# connect it all
self.connect (sum, gain)
self.connect (gain, self.u)
# plot an FFT to verify we are sending what we want
if 1:
post_mod = fftsink2.fft_sink_c(panel, title="Post Modulation",
fft_size=512, sample_rate=self.usrp_rate,
y_per_div=20, ref_level=40)
self.connect (sum, post_mod)
vbox.Add (post_mod.win, 1, wx.EXPAND)
#if options.debug:
# self.debugger = tx_debug_gui.tx_debug_gui(self.subdev)
# self.debugger.Show(True)
def set_freq(self, target_freq):
"""
Set the center frequency we're interested in.
@param target_freq: frequency in Hz
@rypte: bool
Tuning is a two step process. First we ask the front-end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to
determine the value for the digital up converter. Finally, we feed
any residual_freq to the s/w freq translater.
"""
r = self.u.tune(self.subdev.which(), self.subdev, target_freq)
if r:
print "r.baseband_freq =", eng_notation.num_to_str(r.baseband_freq)
print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
print "r.residual_freq =", eng_notation.num_to_str(r.residual_freq)
print "r.inverted =", r.inverted
# Could use residual_freq in s/w freq translator
return True
return False
def main ():
app = stdgui2.stdapp(fm_tx_block, "Multichannel FM Tx", nstatus=1)
app.MainLoop ()
if __name__ == '__main__':
main ()
|